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ABSTRACT

Medical doctors often do not trust the result of fully auto-
matic segmentations because they have no possibility to make
corrections if necessary. On the other hand, manual correc-
tions can introduce a user bias. In this work, we propose
to integrate the possibility for quick manual corrections into
a fully automatic segmentation method for brain tumor im-
ages. This allows for necessary corrections while maintain-
ing a high objectiveness. The underlying idea is similar to the
well-known Grab-Cut algorithm, but here we combine deci-
sion forest classification with conditional random field regu-
larization for interactive segmentation of 3D medical images.
The approach has been evaluated by two different users on
the BraTS2012 dataset. Accuracy and robustness improved
compared to a fully automatic method and our interactive ap-
proach was ranked among the top performing methods. Time
for computation including manual interaction was less than
10 minutes per patient, which makes it attractive for clinical
use.

1. INTRODUCTION

Segmentation of tumor-bearing brain images is an important
pre-requisite for diagnosis as well as for planning and mon-
itoring the treatment of brain tumor patients in clinical prac-
tice. Manual segmentation is tedious and time-consuming and
therefore not generally used. Additionally, it suffers from
intra- and inter-expert variability. On the other hand, auto-
matic segmentation of brain tumor images has made signifi-
cant improvements over the last few years [1], but due to the
highly complex scenario of tumor appearance the results are
still not accurate and robust enough in some cases. This moti-
vates the idea to combine automatic segmentation with man-
ual interaction. Deeley et al. [2] showed that manual post-
editing of automatically generated segmentations reduces not
only operator time, but also inter-expert variations compared
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to completely manual segmentations. Recently, also Heckel
et al. [3] argued in favor of the need for more efficient seg-
mentation editing tools in clinics.

In the context of semi-automatic brain tumor segmen-
tation Birkbeck et al. [4] suggested to employ user inputs
for a graph-cut segmentation of the tumor area, however
they considered only binary tumor / non-tumor segmenta-
tion. Hamamci et al. [5] combined cellular automata with
graph-cut methods to finally evolve a level-set towards the
tumor boundaries for enforcing smoothness. The user had
to provide input information by brush strokes to separate
background from enhancing tumor and the necrotic region.
Recently, Zhao et al. [6] introduced another semi-automatic
approach to segment tumor core and edema. They required
user input by drawing rectangles or curves on one single slice.
The information collected from this input was propagated to
the complete image volume based on structural trajectories in
combination with constrained Markov random fields.

In this contribution, we propose to integrate smart interac-
tive post-editing into an existing fully automatic segmentation
method for tumor-bearing brain images. In contrast to other
methods, the interactive part comes only after a first automatic
segmentation step in order to decrease observer variability.
The tumor is segmented into 4 different sub-compartments
(necrosis, non-enhancing tumor, enhancing tumor, edema).

2. METHODOLOGY

We start with a fully automatic segmentation of the multi-
modal volumetric images using [7], which can be corrected
by the user where necessary. The fully automatic segmen-
tation is based on integrating a decision forests classifier for
voxel-wise tissue classification using a 40-dimensional fea-
ture vector xi (multi-modal intensities, textures and gradient
statistics) with conditional random field (CRF) regularization
for enforcing spatial smoothness in an energy minimization
scheme (more details can be found in [7]). This framework
can be extended, allowing us to incorporate additional infor-
mation from user corrections in an elegant way similar to the



“Grab-Cut” algorithm [8]. Figure 1 shows a schematic of the
pipeline of the proposed interactive segmentation method.

Fig. 1. Pipeline of the interactive segmentation algorithm.
Manual corrections are performed after a first fully automatic
segmentation stage and incorporated into the final result in a
second segmentation update stage.

The automatic segmentation, i.e. the first stage of the
presented method, produces a segmentation of the tumor
into 4 sub-compartments as mentioned earlier. This result is
shown to the user as a color overlay, together with the original
T1contrast image and the FLAIR image. The decision for-
est classifier generates posterior probabilites for each voxel,
indicating how reliable the assigned tissue class is. This in-
formation is used to create a confidence map, which can guide
the user in the manual correction after the first segmentation
stage. Manual corrections by brush strokes will be most
beneficial in regions of low confidence of the classifier. The
user can apply manual corrections using 5 different labels: 4
labels for the different tumor sub-compartments and one label
for healthy tissues. As we are mostly interested in a correct
segmentation of the tumor and not so much in a very accurate
segmentation of the healthy tissues into cerebrospinal fluid
(CSF), gray matter (GM) and white matter (WM), we employ
only one healthy tissue class for the manual corrections in
order to make the interactive part easier and faster for the
user. It is important to mention that approximate quick brush
strokes by the user are sufficient to indicate errors of the au-
tomatic segmentation. It is not necessary to perform a very
accurate manual segmentation at this point.

In the next stage of the algorithm, an energy minimization
method according to equation (1) is used to perform the final
segmentation, integrating the manual user corrections. This
corresponds to applying the random field regularization part
of the fully automatic segmentation stage once again, but with
some modifications, which are described in the following.

E =
∑
i

V (yi,xi) +
∑
ij

W (yi, yj ,xi,xj) (1)

The first term in equation (1) corresponds to the voxel-
wise singleton potentials and the second term to the pairwise
potentials, enforcing a regularization in the neighborhood of
each voxel.

V (yi,xi) = α · p(ỹi|xi) · (1− δ(ỹi, yi)) (2)

In equation (2), p(ỹi|xi) is the probabilistic output from
the initial fully automatic decision forest classifier, ỹi is the la-
bel before, and yi the label after the final regularization stage,
xi is the feature vector. δ is the Kronecker-δ function. If

a label has been manually edited, this new manual label is
selected for ỹi, otherwise the output label from the fully au-
tomatic segmentation stage is kept for ỹi. α is a coefficient to
ensure that manual corrections are preserved during the ran-
dom field regularization, which is set to a high value if the
voxel has been manually edited, otherwise it is set to 1.

W (yi, yj ,xi,xj) =ws(i, j) · (1− δ(yi, yj))·

exp

(
−PCD(xi,xj)

2 · x̄

)
·D(yi, yj)

(3)

Equation (3) ensures that not only the voxels, which
have been actually manually edited, are changed, but that
these manual edits also have an effect on the surrounding
neighborhood (a 6-neighborhood is used in 3D). This is
enforced by the pairwise terms. ws(i, j) is a weighting fac-
tor which depends on the voxel spacing in x,y,z-direction,
(1 − δ(yi, yj)) penalizes different labels of adjacent voxels,

exp
(

−PCD(xi,xj)
2·x̄

)
ensures that regularization is stronger

in regions of similar intensity and D(yi, yj) integrates prior
knowledge about the likelihood of tissue adjacencies (more
details about the individual terms can be found in [7]).

The case at hand is slightly more complicated than the
manual post-editing discussed in [8] for binary foreground
/ background segmentation in natural 2D images. Here we
have 7 different labels instead of 2, therefore ruling out one
label does not necessarily directly yield the label to be se-
lected. It can happen that the manual correction produces
only a “background” label (in this case e.g. “healthy”), but
it is unknown if it should be CSF, GM or WM. For these few
undefined voxel labels after manual correction, a quick reclas-
sification using the decision forest classifier is performed un-
der the condition that only healthy tissue classes are allowed.

Finally, after manual editing, the energy minimization al-
gorithm in (1) is solved using [9] to yield an updated segmen-
tation result with improved accuracy. This saves a substantial
amount of time compared to running the complete classifica-
tion and regularization algorithm again after manual editing
and offers the possibility to provide the user with the final
result very quickly.

3. RESULTS

The supervised classifier was trained on the training dataset
from the MICCAI BraTS 2012 challenge1 and the method
was evaluated on the corresponding testing dataset. The test-
ing dataset contains multi-modal MR images (T1, T1contrast,
T2, FLAIR) from 11 high-grade glioma patients and 4
low-grade glioma patients. The images were already skull-
stripped and registered, therefore no additional pre-processing
was necessary. We compared the results of a fully automatic

1http://www2.imm.dtu.dk/projects/BRATS2012/



algorithm (this corresponds to the first stage of the presented
method, which is basically the same approach as described in
[7]) with the proposed interactive method, where the manual
editing was performed once by a neurosurgeon and once by
an experienced researcher in brain tumor imaging. The users
were presented with an overlay of the automatic segmen-
tation on the T1contrast and FLAIR image along with the
confidence image (see figure 2 and 3). Corrections could be
performed on a separate T1contrast image. The users were
asked to make approximate corrections only and to spend no
more than 5 minutes for the manual editing of one patient
dataset in order to guarantee a realistic clinical scenario.

Figure 2 shows results on an axial slice of patient HG-
0130. It can be seen that the false tumor positives in the
frontal region are effectively suppressed after manual correc-
tions (user brush strokes in cyan and red). The part of the
tumor core, which is initially wrongly classified as edema,
is later corrected to be necrotic tissue. Especially for the
necrotic region it can also be seen that it is sufficient to do
rough corrections. The neighborhood of the corrected voxels
will be re-classified and corrected by the random field seg-
mentation, which is run after the manual editing.

Fig. 2. Example patient BRATS-HG-0130. Upper row from
left to right: overlay of the fully automatic segmentation
result on the T1contrast image and the FLAIR image, and
the confidence map image (brighter means more confidence,
darker less confidence). Lower row from left to right: brush
strokes with manual corrections, final result of the interac-
tive segmentation algorithm (only tumor tissues shown), fi-
nal result of the interactive segmentation algorithm (all tis-
sues shown). Color code: red: necrosis, green: edema, blue:
non-enhancing tumor, yellow: enhancing tumor, cyan: brush
stroke for healthy tissues.

Figure 3 shows results on an axial slice of patient LG-
0103. A subdural hematoma cavity that is wrongly classified
as being tumor is corrected after user intervention. In patients
with cavities it is difficult to obtain a correct segmentation
result without manual interaction.

Quantitative results in terms of Dice overlap coefficient

Fig. 3. Example patient BRATS-LG-0103. Upper row from
left to right: overlay of the fully automatic segmentation
result on the T1contrast image and the FLAIR image, and
the confidence map image (brighter means more confidence,
darker less confidence). Lower row from left to right: brush
strokes with manual corrections, final result of the interac-
tive segmentation algorithm (only tumor tissues shown), fi-
nal result of the interactive segmentation algorithm (all tis-
sues shown). Color code: red: necrosis, green: edema, blue:
non-enhancing tumor, yellow: enhancing tumor, cyan: brush
stroke for healthy tissues.

with the ground-truth segmentation were obtained from the
BraTS2012 online evaluation tool, details are listed in table
1. For both users overlap improved for most compartments
after corrections. Interestingly, the enhancing compartment
showed a decrease in Dice overlap after manual corrections
for both users. Most likely this is due to the fact that enhanc-
ing structures are usually very thin and the users did not spend
sufficient time to capture these thin structures with their man-
ual corrections very accurately. Another reason might be that
the conditional random field segmentation, which is run af-
ter manual corrections, is based on a graph-cut method and
graph-cut methods are known to have a “shrinking bias” that
is most prominent for thin structures.

The difference in overlap with the ground-truth between
the semi-automatic segmentations of the two different users
was not statistically significant (p > 0.1 for every sub-
compartment, Wilcoxon signed-rank test). Furthermore, we
found that the mutual overlap between the semi-automatic
segmentations of both users, also expressed as Dice coef-
ficient, was comparatively high (except for the low grade
gliomas where results were dominated by one ambiguous
case with a very small tumor, see also table 1). This can be
seen as an indication that post-editing of an automatic seg-
mentation can reduce inter-observer variability compared to
completely manual segmentations. As a comparison, Maz-
zarra et al. [10] found much higher values for inter-observer
variability in completely manual segmentations (different
image data used).



Table 1. Quantitative results expressed as Dice similarity
coefficient. HG stands for high-grade, LG for low-grade
gliomas. We report results for the fully automatic segmenta-
tion versus ground-truth (auto-GT), the interactive segmenta-
tion by a neurosurgeon versus ground-truth (NS-GT) and the
interactive segmentation by an experienced researcher versus
ground-truth (ER-GT) for 3 different tumor compartments:
complete tumor, tumor core and enhancing tumor. Addition-
ally, we also report the Dice coefficient of the neurosurgeon
versus the experienced researcher after interactive segmenta-
tion (NS-ER), in this case the neurosurgeon segmentation is
considered as the ground-truth.

Complete Core Enhancing

auto-GT HG 0.72±0.15 0.56±0.20 0.53±0.25
LG 0.35±0.39 0.27±0.41 0±0

NS-GT HG 0.77±0.14 0.58±0.31 0.48±0.21
LG 0.51±0.38 0.31±0.40 0.25±0.50

ER-GT HG 0.78±0.11 0.61±0.27 0.51±0.22
LG 0.69±0.16 0.34±0.42 0.25±0.50

NS-ER
HG 0.92±0.06 0.86±0.12 0.71±0.30
LG 0.64±0.44 0.43±0.50 0.19±0.38

On the BraTS2012 testing dataset the algorithm was
ranked fourth among all submitted segmentation methods
according to the online table (the ranking includes both fully
and semi-automatic methods and is updated continuously).
As this is a method which is based on user editing, better
results could be achieved at the cost of allowing more time
for user corrections.

When analyzing the manual corrections, it could be
shown that they were mostly performed in regions where the
automatic classifier had less confidence (posterior probability
of 0.84 in regions with manual corrections versus posterior
probability of 0.89 in other regions). This shows that manual
intervention is especially useful in regions where it is dif-
ficult for the automatic classification method to distinguish
individual tissue compartments.

Computation time after manual editing was only slightly
more than half of the original computation time for automatic
segmentation (on average 102 seconds after user editing ver-
sus 176 seconds for the initial fully automatic segmentation).

4. DISCUSSION & CONCLUSIONS

We proposed an interactive method for semi-automatic seg-
mentation of brain tumor images. An initial fully automatic
segmentation, together with a confidence map, is shown to the
user who can make corrections where necessary. These cor-
rections are integrated into the segmentation in a second stage
using a fast conditional random field segmentation approach.

The users experienced the manual editing as being quick, easy
and useful for having the possibility to make corrections of an
automatic segmentation interactively.

Total computation time, including automatic segmenta-
tion, manual intervention and final segementation step after
manual intervention was less than 10 minutes per patient.
Overlap in terms of Dice similarity coefficient improved after
manual intervention and there was no statistically significant
difference between two observers. This shows that an inter-
active method for brain tumor segmentation has the potential
to achieve improved accuracy and robustness over automatic
methods within a reasonably short time, while maintaining
a low inter-observer variability. The approach can be useful
for performing quick tumor segmentation and volumetry of
clinical patients. Yet it has to be acknowledged that while
an interactive method might be more accurate and robust, the
complete objectiveness of a fully automatic method is lost. It
depends on the use-case what is more important.

We are planning to integrate the proposed interactive seg-
mentation method as an option into our BraTumIA software
suite for brain tumor image analysis.
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