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ABSTRACT

We present an automatic method to segment brain tissues
from volumetric MRI brain tumor images. The method is
based on non-rigid registration of an average atlas in combi-
nation with a biomechanically justified tumor growth model
to simulate soft-tissue deformations caused by the tumor
mass-effect. The tumor growth model, which is formulated
as a mesh-free Markov Random Field energy minimization
problem, ensures correspondence between the atlas and the
patient image, prior to the registration step. The method
is non-parametric, simple and fast compared to other ap-
proaches while maintaining similar accuracy. It has been
evaluated qualitatively and quantitatively with promising re-
sults on eight datasets comprising simulated images and real
patient data.

Index Terms— Brain Tumor, Brain Tissue Segmentation,
Atlas Registration, Markov Random Field

1. INTRODUCTION

Automatic and accurate segmentation of brain tissues and
important brain structures is of major interest for many tasks
in physiological and biomechanical modeling in cancer re-
search, surgical planning or clinical studies. Many different
approaches to achieve this task exist, e.g. classification, atlas-
based segmentation or segmentation based on deformable
models. Atlas-based segmentation has several advantages
compared to other methods: not only can it provide the dif-
ferent tissue types, but it inherently also contains the segmen-
tation of smaller subcortical structures which are of interest
for surgical planning. Additionally, after matching an atlas to
the patient image, the same deformation can also be applied to
superimpose other modalities of the same atlas on the patient.
For example the atlas diffusion image can be mapped to the
patient, which is important in tumor modeling. Atlas-based
segmentation of different tissue types, such as grey matter
(GM), white matter (WM) and cerebrospinal fluid (CSF) is
an established way to classify different tissues in magnetic
resonance images (MRI) of healthy subjects. The atlas labels
are propagated to the patient image through warping with
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a deformation-field obtained by non-rigid registration tech-
niques. However, in case of tumor-bearing brain images this
approach fails due to the missing tumor prior in the atlas.

In general, it is not possible to simply mask out the tu-
mor area and perform non-rigid registration on the rest of the
healthy brain, because non-rigid methods need a sufficiently
good initialization to converge to a good solution. Addition-
ally, the error in structures in the immediate tumor vicinity
will be largest. However, this is the most important region
because accurate delineation of the structures around the tu-
mor is of major interest in cancer research and surgical plan-
ning. A general idea to overcome the problem, is to introduce
a tumor seed into the atlas and grow the tumor to its approxi-
mate shape. Solutions have been suggested by several groups
[1, 2, 3]. Cuadra et al. [1] use a model of lesion growth
that does not consider any mechanical tissue properties, while
Mohamed et al. [2] use a finite element method (FEM) model
to calculate tissue displacements induced by the tumor mass
effect according to the mechanical properties of surrounding
tissues. After the introduction of a tumor prior into the atlas,
this modified atlas image is warped to the patient image using
non-rigid registration algorithms, thus implicitly performing
segmentation.

It is desirable to incorporate mechanical tissue properties
into models of tumor-induced deformations. Although FEM-
based methods offer this capability, they suffer from the need
of transforming the data into a mesh. Automatic mesh gen-
eration is challenging and error-prone, while semi-automatic
mesh generation is time-consuming and tedious. It is diffi-
cult to handle large deformations of the mesh and frequent
remeshing has to be undertaken. A completely voxel-based
method, which does not require any meshing would greatly
simplify the task. An appealing approach is presented in [3].
However, it runs on a subsampled version of the input image
for reasons of computation speed and it suffers from difficult
parameterization. Additionally, it requires a pre-segmented
tissue image to guide the deformation process.

The aim of this work is to provide a tool to segment the
healthy tissues in tumor-bearing brain images, which can be
easily used by clinicians while avoiding difficult parameter
settings. The proposed method only needs a delineation of
the solid tumor area as an input, which can be easily done
manually or using a previous automatic segmentation step.



2. METHODS

We show the application of a clinically-oriented, new mesh-
free method for modeling soft-tissue deformations to tu-
mor induced deformation and segmentation of tumor-bearing
brain images. It is based on finite differences in a local
neighborhood of each voxel using Markov Random Fields
(MRF).

2.1. The displacement model

In [4] Seiler et al. outlined the idea of formulating soft-tissue
deformations as an energy minimization problem in the MRF
sense with the energy to be minimized being

Utotal = Uprior + Uobservation (1)

In this case, Uprior models the biomechanical properties of
the underlying tissues and Uobservation introduces boundary
conditions. The total energy Utotal is minimized in cliques
surrounding a center voxel. Tissue characteristics are based
on Young’s modulus. A clique and the interactions between
the individual voxels is shown for 2 dimensions in figure 1.

Fig. 1. Different cliques Ci belonging to the center voxel t in
2D.

For each clique Ci at voxel t, the prior energy is calculated
depending on its neighbors s and u as
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Equation (2) describes a linear relation with m{s,u,t} repre-
senting the material property and d{s,u,t} a displacement vec-
tor representing the local voxel displacement. By summing
over all cliques Ci in the complete image region Ω we obtain
the overall prior energy

Uprior =
∑
tεΩ

∑
i

VpCi . (3)

The observation energy of each clique is calculated as

VoCi
= pxs

| bxs − dxs | . (4)

pxs acts as a mask and determines at which voxels boundary
conditions are applied, bxs is the boundary conditions vector

and dxs the displacement vector at position xs. The overall
observation energy in the complete image region is calculated
as

Uobservation =
∑
tεΩ

∑
i

VoCi
. (5)

We process the image in a hierarchical way in order to be
able to use fast and stable local optimizers for the MRF en-
ergy. This results in a hierarchical Markov Random Field
(HMRF) approach. The iterated conditional modes (ICM) [5]
optimization algorithm is used for finding the minimum en-
ergy at each level of hierarchy. This solution is employed for
the initialization of the next hierarchical level. Thanks to its
inherently parallel nature, the ICM algorithm is well suited
for implementation on the GPU. Therefore we also imple-
mented a parallelized version of the optimization algorithm
on a NVidia R© Tesla GPU using Cuda.

2.2. Application of the displacement model to tumor
growth modeling in 3D

The mass effect of brain tumors is simulated using the above
mentioned model. In this study, we concentrate on the mass
effect of gliomas because it has the largest impact on the de-
formation. Conversely, diffusion effects are neglected. The
tumor is grown from a small circular seed, where an outward-
pushing force is applied inside the tumor. This displacement
deforms the surrounding tissues depending on the mechanical
properties they have been assigned.

We adopt a radial expansion force, which is accepted as
a good approximation for glioma growth [1]. Growth is per-
formed in an iterative way until the approximate shape and
volume of the tumor in the patient image is attained. This
means, the hierarchical displacement model, discussed in sec-
tion 2.1, is applied iteratively with a small displacement at
each step.

We would like to emphasize that the presented method
is not intended to be a viable model for biomechanical tumor
growth. It is used as an efficient and biomechanically justified
method to introduce tumor-induced deformations into an atlas
image, in order to be able to perform atlas-based segmentation
of tumor-bearing brain images.

Material properties of brain tissues are taken from Clatz
et al. [6] who report a value of 694 Pa for both GM and WM.
The fluid properties are set to a Young’s modulus of 0.001 Pa.
The skull is assumed to be rigid.

2.3. The complete segmentation pipeline

Before applying the dedicated segmentation algorithm, the
images undergo a preprocessing pipeline. In a first step, the
brain region is extracted from the images using a customized
skull stripping algorithm based on atlas-registration and level-
set refinement.1 Subsequently, bias-field correction is per-
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formed in order to achieve a homogeneous intensity distribu-
tion across the whole image volume using [7]. To cope with
noise, anisotropic diffusion filtering is applied as described in
[8]. After rescaling the image intensities, the histogram of the
atlas image is matched to the histogram of the patient image.

The atlas is initially aligned with the patient image us-
ing an affine registration algorithm with a mutual information
based similarity metric. After this rough alignment, the atlas
is automatically seeded with a tumor prior. This tumor seed is
chosen to lie in the center of mass of the patient tumor. If the
tumor seed happens to be chosen outside a grey or white mat-
ter region, this is corrected automatically so that the seed lies
in the vicinity of the initially estimated seed position. Sub-
sequently the tumor is grown to its approximate shape in the
patient, which is provided as an input to the algorithm. Tu-
mor growth is governed by the displacement model presented
in section 2.2. The patient tumor is eroded by 3 pixels, which
allows for better results because the final exact displacement
can be handled by the non-rigid registration algorithm. The
growth process is stopped when the volume of the artificially
grown tumor matches the one of the eroded patient tumor.

The ultimate shape of the tumor and a segmentation of all
other brain tissues is obtained using a non-rigid registration
step, accounting for the final precise deformation of tumor
and surrounding tissues. In our implementation, we use ITK’s
version of the Diffeomorphic Demons non-rigid registration
method by Vercauteren et al [9]. The method yields a dense-
deformation field, which is used to register the modified atlas
to the pathologic patient image. The Demons method has the
advantage of being fast and producing physically justifiable
and realistic deformations by ensuring the invertibility of the
deformation field. Additionally, it only needs the image in-
tensities to guide the registration process.

3. RESULTS

We analyzed eight volumetric T1-weighted datasets of brain
tumor MR images. Four datasets consisted of simulated im-
ages, kindly provided by [10]. For these images a ground-
truth tissue classification is available. We also analyzed four
real patient cases from the ContraCancrum project database
[11]. The atlas for registration was chosen from [12].

Dice similarity coefficients are measured in table 1 to
quantify the overlap of the results produced by the proposed
method with the ground truth provided by the simulated
datasets. Dice coefficients were in the range between 0.7 and
0.82 for the relevant tissues (WM, GM, CSF).

Figure 2 shows one slice of a real-patient case from the
ContraCancrum database. Each step of our method is de-
picted separately (affine alignment and seeding of the atlas
- tumor growth in the atlas - non-rigid registration of the at-
las). Since no ground-truth segmentation is available for the
patient cases, we compared the registration error of manually
selected landmark points with and without applying the MRF

Table 1. Dice similarity coefficient achieved by the proposed
method for the four simulated datasets under study.

CSF GM WM Tumor

Case-1S 0.71 0.77 0.8 0.93
Case-2S 0.7 0.78 0.78 0.94
Case-3S 0.71 0.77 0.8 0.95
Case-4S 0.72 0.79 0.82 0.87

Fig. 2. Results for one slice of ContraCancrum patient Case-
1. Top row, left to right: Patient image, seeded atlas after
affine registration, deformed atlas after tumor growth. Bottom
row, left to right: Deformably registered modified atlas, tissue
checkerboard of final result, magnitude of the displacement
field after tumor growth.

tumor-growth method. Five landmarks were selected close
to the tumor border, whereas five landmarks were annotated
in regions further away from the tumor. Results are shown
in table 2. When using the MRF growth model, the landmark
error in the tumor border region decreased on average by 12%
while in regions further away from the tumor it decreased sig-
nificantly less. The absolute landmark error decreased up to
7mm. As expected, the absolute decrease was larger in the
tumor vicinity than in other regions. Additionally, it should
be mentioned that without the growth model, landmarks were
present inside the tumor area in some cases, which is obvi-
ously wrong.

Computation times on a single 2.3 GHz CPU ranged be-

Table 2. Relative decrease in landmark error after registra-
tion using the tumor growth model compared to not using the
growth-model for the four ContraCancrum datasets.

Case-1P Case-2P Case-3P Case-4P

Tumor vicinity -22% -15% -14% -7%
Other regions -4% -11% 0% 0%



tween 20 minutes and five hours, depending on the size of
the tumor. The vast majority of the time is spent for the tu-
mor growth process. Previous analyses on 2D slices have
shown that the method is approximately twice as fast com-
pared to a FEM method while maintaining similar accuracy
[13]. Preliminary results of the GPU implementation in 3D
have shown a speed-up-factor of more than 10 (compared to
the CPU version) for the total computation time when running
on a NVidia R© Tesla GPU.

4. DISCUSSION AND CONCLUSION

We applied a clinically-oriented method to deform brain tis-
sues in an atlas, in order to be able to perform atlas-based seg-
mentation of tumor-bearing brain images. This is an exten-
sion of our previous work, which operated on 2D slices only,
required some manual interactions, had less sophisticated pre-
processing and was not parallelized [13]. The technique is
generally applicable to simulate the tumor mass-effect. Its
advantage is that it is non-parametric and easy to be used, es-
pecially in a clinical scenario.

Results were analyzed visually and quantitatively. The
performance of the method was promising when comparing
checkerboard images. Dice similarity coefficients were com-
petitive or even better than for other methods published [3],
however different data was used. Landmark errors in the tu-
mor region decreased significantly when using the proposed
growth method, which clearly shows its justification. As ex-
pected, landmark errors decreased more in the tumor vicinity
than in regions further away from the tumor border. Case-1P
exhibited the largest tumor area, while Case-3P and Case-4P
were rather small tumors. This is reflected in the landmark
error which decreased more for Case-1P than for the other
cases. Preliminary tests showed that computation times could
be drastically reduced to the order of minutes using a GPU
implementation of the MRF tumor growth method. This ren-
ders the technique very useful for daily clinical practice.

4.1. Outlook

In the future, we plan to include a diffusion term into the
growth-model in order to allow for more realistic simulations.
We will also improve and further speed-up the GPU imple-
mentation of the MRF-growth method, and present more de-
tailed comparison between CPU and GPU implementation.
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