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Abstract— We propose a new and clinically oriented ap-
proach to perform atlas-based segmentation of brain tumor
images. A mesh-free method is used to model tumor-induced
soft tissue deformations in a healthy brain atlas image with
subsequent registration of the modified atlas to a pathologic
patient image. The atlas is seeded with a tumor position
prior and tumor growth simulating the tumor mass effect is
performed with the aim of improving the registration accuracy
in case of patients with space-occupying lesions. We perform
tests on 2D axial slices of five different patient data sets and
show that the approach gives good results for the segmentation
of white matter, grey matter, cerebrospinal fluid and the tumor.

I. INTRODUCTION

Accurate automatic segmentation of important brain struc-
tures from Magnetic Resonance Imaging (MRI) is of major
interest for surgical planning procedures as well as for phys-
iological and biomechanical modeling. Atlas-based segmen-
tation of different tissue types like grey matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) is an established
way to classify different tissues in MR images of healthy
humans [1]. The different atlas tissue labels are propagated
to the patient image through warping with a deformation field
obtained by non-rigid registration techniques. However, this
strategy fails in case of brain tumor images because of the
missing tumor prior in the atlas.

Several groups [2], [3], [4] suggest to circumvent this
problem by introducing a tumor seed into the atlas and
grow the tumor to its approximate shape using different
methods. Cuadra et al. [2] use a model of lesion growth
which does not consider any mechanical tissue properties,
while Mohamed et al. [3] use a finite element method (FEM)
model to calculate tissue displacements induced by the tumor
mass effect according to the mechanical properties of the
surrounding tissues. After introducing a tumor prior into
the atlas, this modified atlas image is warped to the patient
image using non-rigid registration algorithms, thus implicitly
performing segmentation. A good overview of the state of
the art was collected by Angelini et al. in [5].

It is clearly desirable to incorporate mechanical tissue
properties into models of tumor-induced deformations. FEM-
based methods offer this capability, however they suffer
from the need of transforming the data into a mesh. Au-
tomatic mesh generation is a challenging and error-prone
task, while semi-automatic mesh generation is tedious and
time-consuming. Additionally, large-scale deformations of
the mesh are difficult to handle. Therefore, a completely
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image-processing based method, which does not require
any meshing would greatly simplify this task. Such an
approach is suggested in [4], but it suffers from difficult
parameterization and for reasons of computation speed it
runs on a subsampled version of the input image only, which
hinders its clinical usability.

Our aim is to develop a simple tool to segment brain
tissues based on previous segmentation of the tumor areas.
While tumor segmentation can be done manually or using
(semi)-automatic methods with reasonable effort, the seg-
mentation of brain tissues is a time-consuming and tedious
task. However, tissue segmentation is necessary in order to
be able to apply more sophisticated models to simulate and
predict patient-specific tumor progression. The tool should
be sufficiently simple and generally applicable to be used by
clinicians without expert knowledge in model parameteriza-
tion on a daily basis.

II. MATERIALS & METHODS

We show the application of a clinically-oriented, mesh-
free method for modeling soft-tissue deformations to tumor-
induced deformation and segmentation of pathologic brain
images. It is based on finite differences in a local neighbor-
hood of each voxel using Markov Random Fields (MRF).
The work was initially proposed in [6] and validated against
an FEM-based deformation method with good results on a
number of synthetic cases. In this work it was adopted to
account for deformations in pathological brain images and
is briefly described in the next section.

A. Hierarchical Displacement Model

The general idea outlined by Seiler et al. in [6] is to
minimize an energy function

Utotal = Uprior + Uobservation (1)

where Uprior represents the biomechanical information of
the brain tissues and Uobservation introduces boundary condi-
tions. These energies are minimized in cliques of a neighbor-
hood system surrounding a center voxel. Local tissue char-
acteristics are based on Young’s modulus. Four exemplary
cliques of one center voxel t are shown in Fig. 1.

Fig. 1. Four different cliques belonging to the center voxel t in 2D.



For each clique Ci, the prior energy is calculated at each
voxel t as

VpCi
=
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Equation 2 uses a linear model, where m{s,u,t} represents
the material properties of the different tissues and dx is a
displacement vector. The overall prior energy is obtained by
summing over all cliques Ci at each voxel t in the complete
image region Ω

Uprior =
∑
tεΩ

∑
i

VpCi
. (3)

The observation energy is also calculated at each voxel as

VoCi
= pxs

| bxs − dxs | . (4)

pxs
is a penalty term which is only non-zero at voxels where

boundary conditions should be applied, bxs is the boundary
condition vector, and dxs the displacement vector at position
xs. The overall observation energy for the complete image
can be calculated as

Uobservation =
∑
tεΩ

∑
i

VoCi . (5)

In order to be able to use fast and stable local optimizers,
the image is processed in a hierarchical way, resulting in a
hierarchical Markov Random Fields (HMRF) approach. Iter-
ative Conditional Modes (ICM) is used as a local optimizer
at each level of hierarchy in order to find the best solution.
This solution is used as an initial guess for the initialization
of the next level.

B. Application to Tumor Growth Modeling

The mass effect of a brain tumor is simulated using
the above mentioned model. In this study we concentrate
on the tumor mass effect since it has the largest impact
on the deformation. The tumor is grown from a small
circular seed. Inside the tumor an outward-pushing force
is applied, modeled as a displacement field, which deforms
the surrounding tissues according to the assigned mechanical
properties.

The outward pushing force is assumed to be radial, which
is accepted as good approximation for glioma growth [2].
However, this radial force does not restrict the tumor to a cir-
cular shape as the final shape is determined by the properties
of the surrounding tissues and not only by the deformation
field of the tumor. In order to circumvent warping problems
in case of large deformations, the growth is performed in an
iterative way until the approximate patient tumor volume and
shape is attained. Thus, the hierarchical displacement model
presented in section II-A is applied iteratively, simulating a
small displacement at each step. The growth displacement
field is employed in a narrow band of 3 voxels around the

tumor boundary. This leads to better control of the tumor
growth behavior and can also be physiologically justified
because the inner tumor regions can often be considered to be
necrotic and do not contribute to the increase in tumor cells
any more. We emphasize that the presented method is not
intended to be a biologically viable tumor growth model, it is
rather considered to be a fast and simple, but biomechanically
justified technique to introduce tumor-induced deformations
into an atlas image. This serves as an initialization for non-
rigid registration, which offers the possibility to perform
atlas-based segmentation of pathologic brain images.

Material properties of brain tissues are taken from Clatz
et al. [7] who report a value of 694 Pa for both grey matter
and white matter. The fluids were chosen to have a Young’s
modulus of 0.001 Pa. The skull is assumed to be rigid,
while a Young’s modulus of 10000 Pa is set for the outward
pushing tumor.

C. The Complete Segmentation Pipeline

In a first step, the atlas is registered to the pathologic
patient image using an affine registration procedure for a
rough alignment of both images. Subsequently the tumor is
grown in the atlas from a manually selected seed point within
the tumor region to its approximate shape in the patient,
which was previously segmented manually. The seed point
is positioned near the center of the patient tumor, avoiding
areas that contain CSF because tumors cannot originate from
fluid areas. Tumor growth is guided by the hierarchical
displacement model described in sect. II-A. In order to obtain
better results, especially in the skull boundary regions, the
manually segmented tumor shape is eroded and tumor growth
is stopped when the volume matches the one of the eroded
patient tumor. This step is necessary because the patient
tumor boundaries can only be roughly delineated in the atlas
after the initial affine registration step. Empirically, we found
that erosion of the tumor region by 3 voxels yields the best
results. The ultimate shape of the tumor and the segmentation
of all other brain tissues is obtained using a non-rigid
registration step which accounts for the final precise defor-
mation of tumor and surrounding tissues. We use the well-
known ITK implementation of the Diffeomorphic Demons
[8] registration method by Vercauteren et al. to register the
modified atlas to the pathologic patient image. Diffeomorphic
Demons has the advantage that it is comparatively fast and
produces a realistic and physically justifiable deformation
by ensuring the invertibility of the deformation field. This
algorithm is applied in a hierarchical way using three levels
of hierarchy, which improves robustness and speed. The
deformation field is regularized using Gaussian smoothing
with a standard deviation of 1 mm. In order to satisfy the
requirements of the sum of squared difference metric, which
is used by the Demons algorithm, histogram matching of
both images is performed before registration.

III. RESULTS

The SRI24 atlas [9] was chosen as reference. It is a prob-
abilistic average atlas of 24 healthy humans, which is well-



suited for atlas-based registration due to its sharpness. The
atlas offers different MRI modalities and a tissue probability
label map.

Axial slices of five different cases with a resolution of
240x240 pixels were investigated. In order to have a ground
truth, one study was conducted with two simulated brain
tumor images provided by UCNIA [10]. These images are
taken from the simulated Brainweb database [11] and used
with a complex, realistic FEM-based tumor growth model
including mass-effect and infiltration in order to yield a
realistic ground truth patient tumor image. Three clinical
cases were also considered, one glioma from the Harvard
SPL tumor database [12] and two from the ContraCancrum
brain tumor database [13]. In case of the SPL patient and
the ContraCancrum patients, tissue types were manually
segmented for comparison purposes. The segmentation was
performed on 2D axial slices of the T1 modality of the MRI
images. In order to obtain better registration results, man-
ual skull stripping was performed before the segmentation
algorithm was applied to the brain image slices.

Figure 2 shows one simulated case, including a checker-
board image of the tissues and the label map. Figures 3
and 4 depict the SPL patient and one patient from the
ContraCancrum brain tumor database, respectively. For these
cases, the magnitude of the deformation field induced by the
tumor growth is also shown. From Figs. 3 and 4 (bottom
right) it can be seen, that the deformation was strong in the
area of the tumor, but also affected the surrounding tissues.
The further away from the tumor seed, the smaller was
the impact of the tumor growth and thus the magnitude of
the deformation field. This indicates a plausible qualitative
approximation of the tumor mass effect.

The results were promising, both from a visual and from a
quantitative point of view. The tumor grew to its approximate
shape in the patient, displacing the surrounding tissues. The
final non-rigid registration ensured a good match of patient
and atlas tumor (Fig. 2,3,4 bottom left) and allowed for a
good segmentation of the brain tissues in all cases, as can
be seen from the checkerboard images (Fig. 2,3,4 bottom
center). We also performed a quantitative comparison of
the segmentation accuracy using Dice similarity coefficient,
which computes the mean overlap of the respective tissues
[14]. The results are reported in Table I. The Dice similarity
coefficient was only slightly worse compared to values which
were reported in studies of healthy brains [14]. It must be
taken into account that both simulated images were very
noisy, which makes it difficult to achieve a good overlap.
Dice coefficient for the CSF is comparatively low because
all fluid regions within the brain are considered. Most other
publications focus on the ventricles only and neglect small
fluid areas in the boundary regions.

For validation purposes, a standard FEM method was
applied to grow the tumor and deform the surrounding
tissues using the same mechanical parameters with a standard
commercial package (Abaqus R©). One simulated case was
assessed, which took 4.8 min to be processed on a single core
of an Intel R© 2.33 GHz CPU (3GB RAM) using the MRF

Fig. 2. Results for the simulated tumor case 2. Top row, left to right:
Patient image, seeded atlas after affine registration, deformed atlas after
tumor growth. Bottom row, left to right: Deformably registered modified
atlas, tissue checkerboard of final result, label checkerboard of final result.

Fig. 3. Results for the SPL patient tumor case. Top row, left to right:
Patient image, seeded atlas after affine registration, deformed atlas after
tumor growth. Bottom row, left to right: Deformably registered modified
atlas, tissue checkerboard of final result, magnitude of the displacement
field after tumor growth.

growth method. The mean overlap after non-rigid registration
was similar with both approaches while computation time
was more than two times higher in case of the FEM method.

IV. DISCUSSION AND CONCLUSION

A. Conclusions

We applied a clinically oriented method to deform brain
tissues in an atlas in order to be able to perform atlas-
based segmentation of brain tumor images. The application
to 2D slices serves as a proof of concept for a full 3D
implementation of the suggested method. But it can also be
useful in a clinical scenario where only few image slices are
acquired, which do not constitute a 3D volumetric image.
The technique is generally applicable to solid tumors and
for simulating the mass-effect of gliomas. Furthermore, it
is sufficiently uncomplicated to be used by non-experts in a
clinical setting and not only for a limited number of research
cases. The technique is based on Markov Random Fields
and has the advantage that it does not require any meshing,



Fig. 4. Results for the ContraCancrum patient tumor case 1. Top row, left
to right: Patient image, seeded atlas after affine registration, deformed atlas
after tumor growth. Bottom row, left to right: Deformably registered modi-
fied atlas, tissue checkerboard of final result, magnitude of the displacement
field after tumor growth.

TABLE I
DICE SIMILARITY COEFFICIENT FOR THE FIVE DATASETS UNDER STUDY.

CSF GM WM Tumor

Simulated-1 0.48 0.62 0.70 0.95
Simulated-2 0.48 0.63 0.69 0.95
SPL-Patient 0.51 0.62 0.67 0.96
CC-Patient-1 0.40 0.60 0.65 0.96
CC-Patient-2 0.42 0.58 0.60 0.97

in contrast to FEM methods. This offers advantages in a
clinical scenario when MR images acquired using a clinical
standard protocol have to be processed. The results were
analyzed visually and quantitatively against a groundtruth
or manual segmentation. The performance of the method
was promising and allowed for a good segmentation of
brain tissues. Compared to other approaches, this method
offers increased robustness and less user interaction thanks to
simple parameterization, as well as faster computation time.
The only parameters to be selected is the tumor seed location.

B. Outlook

In contrast to FEM-based methods, this algorithm gives a
simpler possibility to introduce a growth displacement field
which also considers the final shape of the tumor and not
only a circular expansion. This possibility will be further
investigated in the future.

The extension of the method to 3D is straightforward and
will be done shortly. For the 3-dimensional case, computation
time will become an issue, which is why we are planning
to parallelize the method on the GPU in 3D. The fact that
the MRF approach is only considering a local neighborhood,
makes it fairly easy to parallelize the method. In [6] a
speed-up factor of up to 60 was reported for 2D cases after
implementation on the GPU.

A drawback of the current method is the manual selection
of the tumor seed location. Before an automatic seeding
method can be implemented, an analysis of the tumor seed
location sensitivity has to be undertaken.
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