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Purpose: To improve the detection of peritumoral changes in GBM patients by
exploring the relation between MRSI information and the distance to the solid tumor
volume (STV) defined using structural MRI (sMRI).

Methods: Twenty-three MRSI studies (PRESS, TE 135 ms) acquired from differ-
ent patients with untreated GBM were used in this study. For each MRSI
examination, the STV was identified by segmenting the corresponding sMRI
images using BraTumIA, an automatic segmentation method. The relation
between different metabolite ratios and the distance to STV was analyzed. A
regression forest was trained to predict the distance from each voxel to STV based
on 14 metabolite ratios. Then, the trained model was used to determine the
expected distance to tumor (EDT) for each voxel of the MRSI test data. EDT
maps were compared against sMRI segmentation.

Results: The features showing abnormal values at the longest distances to the tumor
were: %NAA, Glx/NAA, Cho/NAA, and Cho/Cr. These four features were also the
most important for the prediction of the distances to STV. Each EDT value was asso-
ciated with a specific metabolic pattern, ranging from normal brain tissue to actively
proliferating tumor and necrosis. Low EDT values were highly associated with malig-
nant features such as elevated Cho/NAA and Cho/Cr.

Conclusion: The proposed method enables the automatic detection of metabolic pat-
terns associated with different distances to the STV border and may assist tumor
delineation of infiltrative brain tumors such as GBM.
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1 | INTRODUCTION

Glioblastoma multiforme (GBM) is the most aggressive type
of primary brain tumor and is characterized by an extensive
infiltration of tumor cells into the tissues surrounding the
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tumor.1 Structural MRI (sMRI) is the imaging technique of
reference for the management of GBM patients2,3 but fails to
show the full extent of the infiltrative tumor part,4 complicat-
ing the treatment of this disease.

In order to improve the delineation of these tumors, sev-
eral research groups5-8 have used Magnetic Resonance Spec-
troscopy (MRS), a noninvasive technique that provides
metabolic in vivo information of the tissues examined and
complements sMRI in the characterization of brain tumors.9

Results have shown that MRS is able to detect regions with
tumor cells outside the tumor limits defined in T2-weighted
images.8 Improvement in the delineation of glioblastoma has
the potential to improve patient treatment and increase the
overall survival of these patients, as indicated by a phase II
clinical trial10 where a significant increase in GBM patient’s
overall survival was observed after incorporating MRS in the
planning of radiosurgery. Similarly, during brain surgery, the
increased delineation accuracy that can be achieved by using
5-aminolevulinic acid (5-ALA) tumor fluorescence,11 trans-
lates into a more effective tumor resection with increased
survival to the patients.12

Despite these promising results on the detection of tumor
infiltration using MRSI, in the above-mentioned work, as in
current clinical practice, only a very limited amount of the
information provided by MRS is used. More precisely, the
improvement in tumor detection is usually achieved simply
by thresholding the metabolite ratio Cho/NAA. Therefore, it
is important to evaluate alternative approaches that, using
more information, may further improve tumor delineation
and detection of tumor infiltration.

Several researchers have developed methods that, instead
of analyzing each metabolite or metabolite ratio individually,
aim at identifying metabolic patterns associated with differ-
ent tissues.13-26 These methods can be divided into two main
groups: classification methods13,18,20,23 and (blind) source
separation methods.14-17,19,21,22,24-26 In the first group the
analysis of each spectrum corresponds to the classification of
each spectrum into one of a set of predefined classes. There-
fore, the tumor boundary is simply the region delimited by
the voxels classified as tumoral tissue. In contrast, the second
group presents a set of methods that model each spectrum as
a linear combination of different reference spectra of prede-
fined tissue-types (e.g., necrosis, tumor, and normal brain tis-
sue). By doing so, tumor delineation can be performed based
on the estimations of the tumor-tissue contribution in each
spectrum. This type of methods is more suitable for delineat-
ing GBM since they are prepared to deal with diffuse tumor
boundaries and with partial-volume effects that originate
from the low spatial resolution of MRSI data. In both cases,
the results can be made easily interpretable by converting the
output into nosologic images, that is, images where each
color represents a given tissue type.27

The two types of methods presented above enable a bet-
ter use of the MRSI data for tumor delineation, however,

their availability in clinical practice is still very limited. One
of the main challenges for the incorporation of such methods
into clinical routine is that their results depend on the set of
classes or reference spectra used, which not only may vary
considerably depending on the dataset and methodology
used, but also usually require a nontrivial decision regarding
the number of classes or reference spectra that should be
considered.

In this work, a novel approach to explore MRSI informa-
tion for brain tumor delineation is presented. The method
was developed considering the solid tumor volume (STV)
identified in sMRI as the core of the tumor. Moreover, it was
assumed that the probability of finding tumor cells decreases
as the distance to the STV increases. Under these assump-
tions, we explored the relation between metabolic patterns
and the distance to the STV defined in sMRI. In this way, it
may be possible to detect tumor infiltration by simply identi-
fying metabolic signatures that are associated with close dis-
tances to the STV.

The work here presented starts with an analysis of the
relation between individual metabolite ratios and the distance
to STV. For comparison, we looked also at the values of
these metabolite ratios for the different MRI-segmentation
classes (white-matter [WM], gray-matter [GM], cerebral-
spinal-fluid [CSF], enhancing-tumor [E-Tumor], non-
enhancing tumor [NE-Tumor] or necrosis). The analysis of
the relation between each feature and the distance to STV
was supported by an MRS-Feature Spatial Distribution
(MRS-FSD) model that is introduced in this article.

After the analysis of the different features separately, a
regression forest28,29 was trained to predict the distance to
STV based on the value of 14 metabolite ratios in each spec-
troscopic voxel. The relation between metabolic patterns and
the distances predicted by the regression forest, or expected
distances to tumor (EDT), was analyzed. Finally, the con-
tours defined by the EDT maps produced by the trained
model were compared with sMRI segmentation.

2 | METHODS

2.1 | Data

A total of 23 pre-operative MRSI examinations (PRESS,
CHESS water suppression, TE5 135 ms, TR5 1500 ms)
were collected from different GBM patients using two 1.5T
Siemens scanners (models “Aera” and “Avanto,” Siemens,
Erlangen, Germany). The MRSI data had an original resolu-
tion of 12 3 12, with a voxel size of 13.33 3 13.33 3
15 mm3, and was interpolated before DICOM storage to a
resolution of 32 3 32 and a voxel size of 5 3 5315 mm3.
All spectra from outside the PRESS-box, as well as the bor-
der voxels of the excited PRESS volumes, were discarded as
these voxels are not properly excited. Moreover, the border
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voxels of the PRESS volume are usually highly affected by
the chemical shift displacement artifact and cannot be cor-
rected using methods such as the selection profile correction
discussed in the next section. After removing the outer vox-
els, the dataset contained a total of 4452 spectra. Besides
spectroscopy, the protocol included acquisition of T1-
weighted (MP RAGE, TE5 2.67 ms; TR5 1580 ms,
TI5 900 ms; 1 3 131 mm), T1c-weighted post-contrast
(MP RAGE, TE5 4.57 ms; TR5 2070 ms, TI5 1100 ms; 1
3 131 mm), T2-weighted (SPACE, TE5 380 ms,
TR5 3000 ms), and FLAIR MRI (TE5 88 ms, TR5 8000
ms, TI5 2500 ms).

Apart from the data collected from GBM patients, seven
MRSI recordings were acquired from three healthy volun-
teers using the same acquisition parameters. This healthy
control dataset contained total of 1372 spectra after exclusion
of the outer-voxel row of the excited volume.

The measurements were performed in conformance to
local and national ethical regulations, meaning that all
patients gave their written informed consent that their data
could be used for scientific purposes.

2.2 | MRS data processing pipeline

The MRSI data was processed using jMRUI’s SpectrIm plu-
gin (www.jmrui.eu) and included the following processing
steps:

1. Residual water peak removal using HLSVD30;

2. Automatic Quality Control31-33;

3. Frequency-Shift Correction;

4. Auto-phasing;

5. Quantification using QUEST34;

6. Selection profile correction.35

Quality Control was performed using a random forest model
that was trained to reproduce the judgment of an expert. The
criteria for rejection of the training data was the presence of
visible signal artifacts and low SNR. The trained model out-
puts a probability of acceptance by an expert. Therefore, after
assessing all spectra with the automatic classifier, all spectra
with a probability of acceptance by an expert below 0.5 were
removed from the dataset. After quality filtering, the dataset
contained 3733 spectra, meaning that around 16% of the
spectra (719 spectra) were classified as having unacceptable
quality. For more details on automatic quality filtering the
reader is referred to.31-33,35

Quantification was performed using QUEST and a
metabolite model that included the following metabolites:
Cho, Cr, NAA, Glu, Gln, Lac, Lip1.3, Lip0.9.

Chemical-Shift Displacement artifact and RF selection
pulse profile effects of the PRESS sequence were corrected
using metabolite maps recorded of phantoms using the same

acquisition parameters as the in vivo measurements. This
correction is essential for the analysis of MRSI, reducing the
spatial variations of the relative metabolite content that origi-
nate from the nonideal selection pulses. In-depth information
on the selection profile correction is found in Ref. 35.

2.3 | Image segmentation using BraTumIA

The sMRI images acquired for each MRSI examination were
segmented into the following compartments: WM, GM,
CSF, edema, NE-Tumor, E-Tumor, and necrosis. STV was
defined as the union of NE-Tumor, E-Tumor, and necrosis.

The segmentation was performed fully automatically
using BraTumIA.36,37 BraTumIA is a machine learning-
based segmentation method that was trained on an independ-
ent dataset of 54 pre- and post-operative MRI examinations
of glioblastoma that were manually segmented by experi-
enced neuroradiologists. For the automatic segmentation, the
following modalities are required as input: T1, T1c, T2, and
FLAIR. A more detailed description of the algorithm and
training data can be found in the study of Meier et al.37

2.4 | MRS features

Two types of features were analyzed: (1) %metabolite, calcu-
lated as the ratio between the area of a given metabolite and
the total sum of the areas of all metabolites, and (2) conven-
tional ratios between the areas of two metabolites. The areas
were calculated by integration of the complete metabolite
signal of the basis set after fitting with QUEST and were cor-
rected for the selection profile. Considering this, the follow-
ing 14 MRS features were analyzed in this article: %NAA,
%Cho, %Cr, %Glx, %Lac, %Lip, Cho/Cr, Cho/NAA, Glx/
NAA, Glx/Cr, Lac/Cr, Lip/Cr, Lac/NAA, and Lip/NAA. In
these features, Lip stands for the sum of Lip1.3 and Lip0.9,
and Glx for the sum of Glu and Gln.

2.5 | Spectra and MRS features for different
distances to the STV and different image
segmentation classes

For each spectroscopic voxel, the assigned MRI-
segmentation class was selected based on majority voting,
considering the voxels of the image segmentation mask that
are contained within the spectroscopic voxel. Then, the dis-
tance from each voxel to the STV was calculated as the
Euclidean distance to the nearest voxel assigned to one of
the classes of the STV (NE-Tumor, E-Tumor, Necrosis). The
distance was calculated in the plane of the MRSI grid and
rounded to the closest distance corresponding to an integer
number of voxels.

The spectra of all spectroscopic voxels were grouped
based on the rounded distance to STV and based on the
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segmentation class. All spectra were normalized using L1-
normalization, and, for each group (i.e., range of distances to
STV or segmentation class), the median spectra and the 5th,
25th, 75th, and 95th percentile spectra were calculated.

Similarly, to the spectra, the 14 previously described fea-
tures were also grouped based on the segmentation class and
the distance to STV. For each MRSI examination, the differ-
ent feature maps were spatially interpolated by a factor of
four (zero-filling) to enable a finer analysis of the relation
between each feature and the distance to STV. After interpo-
lation, the final in-plane resolution was 1.25 3 1.25 mm. For
each distance to STV and for each image segmentation class,
the median values as well as the 5th, 25th, 75th, and 95th
percentiles were calculated. The same percentiles were calcu-
lated for all voxels of the healthy volunteers’ dataset and
used as a reference.

2.6 | MRS-feature spatial distribution (MRS-
FSD) model

In order to compare the spatial properties of the different
metabolite ratios, namely their relation with the distance to
STV, the following MRS-Feature Spatial Distribution (MRS-
FSD) model was introduced:

xiðdÞ5Ki1Aie
2 d

ki (1)

where d is the distance, and Ki, Ai, and ki are the model
parameters for the feature i. In this expression, Ki represents
the value of the feature i when the distance to the tumor
approaches infinity (Ki5xiðd51Þ). The fit parameter Ai

(amplitude) represents the difference between the values
found in the STV and the values found in regions far from
the STV (Ai5xi d50ð Þ2xiðd51ÞÞ. The distance parameter
ki, or spectral feature normalization length, controls the
characteristic rate at which the parameter normalizes as the
distance to the tumor increases.

To facilitate the comparison between different features,
the values of each feature were rescaled before fitting the
model using the following expression:

x0i5
xi2HX5th

i
HX95th

i 2HX5th
i

(2)

where HX5th
i and HX95th

i correspond respectively to the 5th
and the 95th percentiles of the same feature in healthy sub-
jects, and xi and x0i correspond to the value of the feature in
GBM patients before and after rescaling. The rescaling ena-
bles direct comparison of the different model parameters
between different MRS features and allows for an easier
interpretation of the results.

Following the above described feature rescaling, we define
the abnormality distance of a given feature i, Dabn;i, as the dis-
tance at which each feature crosses the abnormality threshold.

The abnormality threshold was defined as HX95th
i for features

that are increased in tumoral tissue relatively to normal brain
tissue, and as HX5th

i for features that are decreased in tumoral
tissue. Therefore, Dabn;i is calculated as:

Dabn;i5

2ki � log 12Ki

Ai

� �
;Ai>0

2ki � log 2Ki

Ai

� �
;Ai<0

8>>><
>>>:

(3)

Spectroscopic features that are, in average, abnormal in
large peritumoral volumes are associated with larger Dabn;i

values.
The MRS-FSD was fitted to the median curves of the 14

different features, that is, the curves described by the median
feature values in function of the distance to STV. This was
motivated by the fact that the number of voxels decreases
considerably as the distance to the tumor increases. More-
over, the STV voxels (d5 0) have often skewed distribu-
tions. Finally, the use of the median curves instead of the
voxels separately improves the robustness of the results to
the presence of outliers.

In order to test the stability of the results, the fitting was
performed six times, excluding every time the data from one-
sixth of the patients. This was done on par with the sixfold
cross-validation scheme used to test the predictions of the
distance to the STV described in the following section. The
mean and standard deviation of the fitting results were
determined.

2.7 | Expected distance to tumor (EDT) maps

To test the ability to identify metabolic patterns associated
with different distances to the STV, a regression forest28 was
trained to estimate the distance to solid tumor based on all of
the 14 features previously described. For comparison, the
distance to the STV was also predicted based on individual
features using the corresponding inverted MRS-FSD models.
In both cases, the training followed a sixfold cross-validation
scheme, where in each iteration the data from one-sixth of
the patients were excluded from the training and used to test
the trained model.

The regression forests28 (R, randomForest package29)
were trained using 500 trees and standard parameters (mini-
mum size of terminal nodes equal to 5, and number fea-
tures per node equal to one-third of the total number of
features,38 i.e., 14=354:667 � 5). The trained regressors
were used to evaluate which features carry the most infor-
mation to estimate EDT values. Two different measures of
feature importance were analyzed: increase in Mean
Squared Error (MSE) and residual sum of squares. The
first one is calculated as the average increase in error as a
consequence of permuting the values of a given feature
between different Out-Of-Bag (OOB) examples, a group
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of examples that are excluded from the training in each
tree as a result of bagging.39 The greater the error
increase, the greater the importance of the permuted fea-
ture for the predictions. Regarding the second measure,
the residual sum of squares, this measures the ability of a
given feature to separate the examples into different
groups with different properties. Features that, during
training, have a higher contribution to the separation of
the training examples, are considered more important.
More details on these feature importance measures that are
characteristic of regression forests can be found in the
original paper from Breiman.28

In order to allow the regression forest models to distin-
guish the different tumor compartments, virtual distances
were assigned to the voxels of these classes before training.
A distance of 22 mm was used for necrosis, 21 mm for E-
Tumor and 0 for NE-Tumor.

Regarding the estimation of the distance to STV based
on the value of a feature i and the corresponding MRS-FSD
model, this was determined as:

d xið Þ5
2ki � log xi2Ki

Ai

� �
;
xi2Ki

Ai
� E

2ki � log ðEÞ ;
xi2Ki

Ai
<E

8>>><
>>>:

(4)

where E is an arbitrarily small number that, in this work, was
defined as 0.001. This prevents problems with close-to-0 and
negative arguments of the logarithm function and sets the
maximum expected distance that can be predicted using the
corresponding model.

3 | RESULTS

3.1 | Spectra per MRI segmentation class

Figure 1 shows the different spectra for each MRI segmenta-
tion class. The results show that the spectra vary considerably
for each MRI class, especially for the tumor classes. This is
caused not only by the differences between the information
provided by MRS and sMRI,40,41 but also by the partial vol-
ume effects derived from the low resolution of the acquired
MRSI data. Despite the variability, the grouping of the spectra
per MRI-segmentation class highlights several distinctive
characteristics of the different tissues. As expected, the highest
levels of Lip and Lac, and lowest levels of NAA and Cr are
normally found in necrosis. Enhancing and NE tumor have
very similar spectra, reflecting that contrast leakage caused by
blood–brain-barrier disruption does not necessarily translate
into differences in metabolic features. Interestingly, in Edema
we find the highest levels of Glx (see difference spectrum
between 3.7 and 3.8 ppm, and between 2.1 and 2.4 ppm).

Regarding the CSF spectra, pure CSF spectra are
expected to contain no metabolites, which conflicts with the
results of Figure 1. However, as described in the methods sec-
tion, each spectrum was assigned to the MRI-segmentation
class of the majority of the corresponding image voxels. This
means that, due to this strategy and the low resolution of the
MRSI protocol used, most of the spectroscopic voxels are not
“pure” CSF voxels, which explains the existence of visible
metabolites in the “CSF” spectra presented here. Moreover,
since all spectra are normalized, the height of the peaks in
CSF is identical to the one seen in GM or WM.

FIGURE 1 Spectra perMRI-Segmentation class. The black line shows the medianmagnitude spectra for each class and the shades of the gray
show the corresponding 5th, 25th, 75th, and 95th percentiles. The green line shows the medianmagnitude spectra of data collected from healthy
controls (includes GM,WM, and CSF), and the red line the difference between the twomedianmagnitude spectra. All spectra were normalized
using L1-normalization. The normal brain tissue pattern seen for the CSF class is a consequence of the partial volume effects and the normalization of the
spectra
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3.2 | Spectra per distance to the STV

Figure 2 shows the magnitude spectra depending on the dis-
tance to the STV. In these plots, a distance of 0 mm corre-
sponds to all spectra of the classes of the STV (E-Tumor, NE-
Tumor, Necrosis). By visual inspection, it is difficult to detect
changes in distances greater than 30/35 mm. From distances
between 5 and 30 mm, the most noticeable effects are the
increase in NAA and decrease in Cho as the distance to tumor
increases. For distances of 5 mm, some spectra contain ele-
vated levels of lipids, which should come as result of partial
volume effects or errors in MRI segmentation. A closer look
at the spectra shows that Glx levels are visibly elevated in
regions with distances between 5 and 15 mm from the tumor.

3.3 | MRS features as a function of the
distance to the STV and image segmentation
class

The values of the six %metabolite features as a function of
the distance (blue) and MRI segmentation class (green) are

presented in Figure 3. The reference values of the 5th, 25th,
50th, 75th, and 95th percentiles of each feature in healthy
volunteers are shown in red for reference. For sake of sim-
plicity, the plots corresponding to the remaining metabolite
ratios are included in the Supporting Information (Supporting
Information Figures S1.1 and S1.2).

The data shows that %NAA and %Cr levels are reduced
in the brain of GBM patients, even in regions that are located
very far from STV. As expected, both features get further
reduced, as the distance to STV decreases. In contrast, the rel-
ative quantities of the remaining metabolites increase from
normal brain tissue to tumor. The feature %Glx shows a
unique characteristic: the maximum value is observed in the
peripheral zone of the tumor, in edema and for distances
between 5 and 10 mm from the STV.

3.4 | MRS-FSD model

Table 1 shows the results obtained by fitting the MRS-FSD
model described (Equation 1) to the rescaled data (see Equa-
tion 2). Figure 4 shows a plot of the spectral feature

FIGURE 2 Spectra for different distances to the STV. The black line shows the medianmagnitude spectra for each distance and the shades of the gray
show the corresponding 5th, 25th, 75th, and 95th percentiles. The green line shows the medianmagnitude spectra of data collected from healthy controls
(includes GM,WM, andCSF), and the red line the difference between the twomedianmagnitude spectra. All spectra were normalized using L1-normalization
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FIGURE 3 Value of several%metabolite features as a function of the sMRI segmentation class (green), and the distance to STV (blue). For each value
of the horizontal axis, the 5th, 25th, 50th, 75th and 95th percentiles are shown as depicted in the legend. For each feature, the horizontal level lines in red
mark the 5th, 25th, 50th, 75th, and 95th percentiles in healthy volunteers (includes GM,WM, and CSF)
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normalization lengths and amplitudes for all ratios except
%Glx, for which the normalization length is considerably
larger when compared to the remaining metabolites. The
introduced model is able to well describe the relation
between the feature values and the distance to STV, as
shown by the high R2 values, with the exception of %Cho.
For this feature, the differences in value between tumor and
healthy brain tissue are close to the level of the noise and,
therefore, the model fails to explain a considerable part of
the variance of the data. The plots showing the fitting results
are included in the Supporting Information (Figures S2.1 to
S2.14).

Regarding Glx ratios, Glx/NAA seems to be more sensi-
tive than Glx/Cr to detect the effects of tumor presence,
showing a larger normalization length and amplitude. This
result can be explained by the fact that, compared to Cr,
NAA is reduced in a broader volume that extends farther
from the STV, as shown by the larger absolute value of the
amplitude and larger normalization length. Given that the
increase in Glx has been associated with neuronal loss and
demyelination,42 it is expected that the ratio with NAA
increases the sensitivity to detect deterioration and loss of
neurons.

The Lip and Lac ratios showed the smallest normaliza-
tion lengths, reflecting the fact that these features are

significantly altered only in a very confined region, namely
in necrotic tissue.

Besides Cho/NAA, whose sensitivity to detect peritu-
moral changes has been extensively discussed in the litera-
ture, two other features stand out as a result of their large
abnormality distances: %NAA and Glx/NAA.

3.5 | Expected distance to tumor (EDT)

The feature importance results associated with the regression
forest models, as well as the Dabn values for each feature, are

TABLE 1 Fitting results of the MRS-FSD model for different features

Feature mean R2 SEM R2 mean K SEM K mean A SEM A mean k SEM k mean Dabn SEM Dabn

%Cho 0.470 0.073 0.746 0.008 0.290 0.041 6.963 1.273 0.354 0.730

%Cr 0.943 0.005 0.274 0.014 21.121 0.018 4.623 0.305 6.479 0.277

%NAA 0.946 0.006 0.406 0.027 21.484 0.018 9.571 0.802 12.308 0.600

%Glx 0.886 0.008 0.003 0.100 0.996 0.097 60.884 9.453 20.423 1.140

%Lip 0.925 0.015 0.562 0.011 1.650 0.053 3.043 0.162 4.008 0.119

%Lac 0.848 0.060 0.465 0.017 1.064 0.023 4.393 0.295 3.004 0.179

Cho/NAA 0.967 0.003 0.725 0.020 3.357 0.058 4.230 0.251 10.602 0.558

Cho/Cr 0.975 0.001 0.903 0.012 2.700 0.075 3.162 0.083 10.583 0.265

Glx/NAA 0.959 0.001 0.500 0.017 2.379 0.021 8.706 0.238 13.577 0.235

Glx/Cr 0.948 0.006 0.470 0.014 1.389 0.015 9.409 0.373 9.043 0.263

Lip/Cr 0.959 0.004 0.631 0.009 4.250 0.188 1.915 0.084 4.660 0.150

Lac/Cr 0.930 0.013 0.540 0.011 3.228 0.072 2.183 0.087 4.252 0.161

Lip/NAA 0.961 0.005 0.515 0.012 4.293 0.175 2.064 0.101 4.482 0.158

Lac/NAA 0.930 0.012 0.451 0.017 3.252 0.095 2.547 0.113 4.529 0.205

The model was fitted to the median curve of the feature values in function of the distance to STV. Before curve fitting, the data was rescaled as described in expres-
sion 2. For each feature, model fitting was performed six times, excluding every time the data from one-sixth of the patients. The mean and standard error of the
mean (SEM) of the fitting results are shown for the coefficient of determination (r2), model parameters (K, amplitude A, and normalization length k) and abnormal-
ity distance (Dabn). Values of k and Dabn are given in mm.

FIGURE 4 Plot of the different amplitudes (A) and normalization
lengths (k) for each feature. The plot shows the mean values6 1.96 times
the standard error of the mean of the fitting results shown in Table 1. The
results of %Glx are not shown in this plot, given that this feature shows a
considerably larger normalization length relative to the other ratios
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shown in Figure 5. As it can be seen, the abnormality distan-
ces are highly correlated with feature importance for the pre-
diction of the distance to STV. The Pearson correlation
coefficient between the average values of Dabn and DMSE
was 0.836 (P5 .0002), and between the average values of
Dabn and RSS 0.833 (P5 .0002).

The results show that the four features that contain the
most information to estimate the distance to the tumor are
%NAA, Glx/NAA, Cho/NAA, and Cho/Cr. From the Lip and
Lac related features, Lip/Cr seems to be the most important.
Since the different tumor compartments were labeled with dif-
ferent virtual distances (22 for Necrosis, 21 for E-Tumor,
and 0 for NE-Tumor), it is expected that the importance of the
Lip/Cr ratio is related to its role in identifying necrotic tissue.

The comparison between the estimated and measured dis-
tances to STV for the RF model and for the inverted MRS-
FSD models of 5 of the most important features, are pre-
sented in Figure 6. Compared to the single-feature models,
the predictions made by the RF-model are more accurate and
show a smaller variance. However, the predictions of the
RF-model show a positive bias for regions close to the STV,

and a negative bias in regions far from the solid tumor. Inter-
estingly, the median curve of the RF-model is approximately
monotonic. Due to the superiority of the RF-model, this was
the model selected to generate the EDT values used in the
following results of this article.

Figure 7 shows the values of different features per EDT
and Figure 8 the characteristic spectra associated with differ-
ent EDT values. These results show the relations between
feature values and distance to the STV that were learned by
the RF model. The different plots of Figure 8 show that, for
each EDT value, there is a specific spectroscopic pattern
associated with it. Compared with the results of Figure 2,
which show the spectra for different distances to STV, the
grouping of the spectra per EDT value shows a better order-
ing of the spectra in terms of malignancy. More specifically,
the ordering per EDT value shows more pronounced malig-
nant features, that is, higher Cho/NAA and Cho/Cr, for
shorter (expected) distances and less malignant features, that
is, spectra identical to normal brain spectra, for spectra with
large (expected) distances to the tumor.

Finally, Figure 9 shows the sMRI segmentation overlaid
with the isolines of the corresponding EDT maps. In general,
the EDT maps show a good agreement with the sMRI seg-
mentation. However, in several of these maps, regions identi-
fied as edema or even normal brain tissue have small EDT
values, which, potentially, may indicate regions of tumor
infiltration (see, for instance, cases #3, #6, #17, and #18).

4 | DISCUSSION

4.1 | MRS data shows significant metabolic
alterations far from solid tumor visible in MRI

The results of Figure 3 show that several of the metabolite
ratios are significantly altered in regions outside the STV.
Previous studies have shown that MRS is not only able to
detect changes being solid tumor visible MRI but also beyond
any T2 abnormalites,

5-8 a characteristic that has been explored
to improve tumor delineation. It is expected that the main con-
tribution to the peritumoral changes seen in Figure 3 originate
from phenomena of clinical interest, such as tumor infiltration,
edema, and inflammatory response. This is supported by the
mentioned results from the previous literature, as well as by
the structure seen in the peritumoral region that is made visible
by the EDT maps of Figure 9. Despite this, the low resolution
of the acquired data means that effects caused by signal bleed-
ing,35,43,44 which causes the voxels near the tumor to have
altered spectra regardless of the presence of any tumor-related
effect, cannot be ignored. The severity of the signal bleeding
depends not only on the native resolution of each MRSI exam-
ination but also on other factors such as k-space filtering and
on the shape of the source of the signal, in this case, the tumor.
The impact that signal bleeding can have on MRSI data can be

FIGURE 5 Abnormality distances and relative importance for the
prediction of the distance to STV of the differentMRS features. The
abnormality distances (green) were calculated based on theMRS-FSD
models for each feature. The two feature importancemeasures (blue) were
determined by the RF-models trained to estimate the distance to the tumor.
The bar plots show, for each feature, the mean values6 1.96 times the
standard error of the mean of the sixfold CV results. For a better explana-
tion of the meaning of the feature importance measures please see the Sec-
tion 2.7
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FIGURE 6 Comparison between the predictions of the distance to the STVmade using different models. The plots show the predicted distances as a
function of the measured distances to the tumor. In each plot, the blue line and the blue shades show the median and the 5th, 25th, 75th, and 95th percentiles
of the predicted distances as a function of the measured distances to the tumor, similarly to the shades seen in the plots of Figure 3. The red line shows the
mean absolute error in function of the distance to STV. In each plot, the mean absolute error (MAE) for all voxels and correctedMAE are shown. The cor-
rectedMAE corrects for the differences in the number of voxels of different distances and corresponds to the average value ofMAE for each distance, that
is, the average value of the red curve. The virtual distances used to distinguish the different tumor compartments are highlighted in each plot (22 for Necro-
sis,21 for E-Tumor and 0 for NE-Tumor). All results produced using sixfold CV
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FIGURE 7 Feature values in function of the EDT values predicted using sixfold CV. For each value of the horizontal axis, the 5th, 25th, 50th, 75th,
and 95th percentiles are shown (blue shades), as in Figure 3. For each feature, the horizontal level lines in red mark the 5th, 25th, 50th, 75th, and 95th per-
centiles in healthy volunteers (includes GM,WM, and CSF). The negative and zero EDT values correspond to Necrosis (22mm), E-Tumor (21mm), and
NE-Tumor (0 mm), as it is highlighted in every plot

PEDROSA DE BARROS ET AL.    | 2349
Magnetic Resonance in Medicine



assessed by measuring and analyzing the point-spread-function,
as described for instance in Ref. 44, or simply performing phan-
tom studies to evaluate the accuracy of tumor delineation as
described in Ref. 45. These two aspects should be included in
further studies. Besides studies to evaluate the impact of the
low resolution in the analysis of the relation between the dis-
tance to tumor and MRSI features, it is essential to perform a
similar study using higher resolution MRSI data acquired, for
instance, with EPSI.46,47 For an even finer resolution, upscaling
of MRSI can be performed based on the structure found in
high-resolution MRI images, as shown in Ref. 48. However, in
this case, it would be necessary to evaluate the use of the men-
tioned super-resolution method for brain tumor data.

4.2 | The MRS-FSD model, a tool to analyze
the spatial properties of MRS features

The MRS-FSD model introduced in this article describes the
main aspects of the relation between each MRS-feature and

the distance to STV. More precisely, the model characterizes
each feature in terms of (1) the magnitude and sign of the
differences between healthy brain tissue and solid tumor, and
(2) the spatial rate of the change. This allows to identify dif-
ferent groups of features: features that are highly altered
locally in solid tumor, such as those associated with tumor
necrosis like Lip/Cr and Lip/NAA; features that are reduced
in solid tumor, such as %Cr and %NAA; and features show-
ing abnormal values in a broad peritumoral region, such as
Glx/NAA and %NAA. For the detection of tumor-related
changes, the latter group is obviously the most interesting.
To help the interpretation of the model parameters, the
abnormality distance Dabn was introduced. As it was shown,
Dabn can be used to identify the features that carry the most
information for determining the distance to STV. These
results, show that the MRS-FSD model is a simple tool that
may be used to assist the analysis of the spatial properties of
different MRS features in relation to the distance to the solid
tumor. Nevertheless, it should be highlighted that the

FIGURE 8 Spectra for different EDT values predicted using sixfold CV. EDT values were rounded to the closest distance value shown in these plots.
Spectra with EDT values equal or bigger than 47.5mmwere not included. The negative and zero EDT values correspond to Necrosis (22 mm), E-Tumor
(21 mm), and NE-Tumor (0 mm). The black line shows the medianmagnitude spectra for each class and the shades of the gray show the corresponding
5th, 25th, 75th, and 95th percentiles. The green line shows the medianmagnitude spectra of data collected from healthy controls (includes GM,WM, and
CSF), and the red line the difference between the twomedianmagnitude spectra. All spectra were normalized using L1-normalization. No spatial interpola-
tionwas performed
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FIGURE 9 Isoline maps of the expected distance to tumor (EDT), determined based on the spectroscopic information from each voxel, overlaid over
the corresponding sMRI segmentation. The EDTmapswere calculated using the described RF-model and following a sixfold CV scheme, that is, the maps
from each rowwhere calculated using models trained based only on the data from the other rows. The color code used for the background image (sMRI
segmentation) is shown on the left side. All regions for which the spectra had insufficient quality are shown in black. The color scale of the EDT isolines is
shown on the right
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simplicity of the model does not allow to completely
describe features such as %Glx, for which the maximum val-
ues occur neither in STV or healthy brain tissue but in
between these two regions.

4.3 | Glx/NAA and %NAA may allow
detecting early signs of tumor infiltration

The results in Figure 5 show that %NAA and Glx/NAA are
the metabolite ratios with the largest Dabn. These features
are also the ones that contain the most information for pre-
dicting the distance to the STV, followed by Cho/NAA, a
metabolite ratio that is known to be associated with tumor
infiltration.5 The ability of Cho/NAA to identify tumor
infiltration is justified by the combination of two opposed
effects49-51: on the one hand, the high membrane turn-over
seen in tumor cells leads to high values of (free) Cho and,
on the other hand, the neuronal loss/dysfunction as a result
of the tumor causes a decrease in NAA. Despite elevated
Cho levels being associated with tumor metabolism, the
results of Cordova et al.5 show that Cho/Cr is not a good
predictor for tumor infiltration, which may suggest that
NAA is the metabolite that mainly explains the correlation
between Cho/NAA and tumor cellularity. This is supported
by the results presented in this article, showing that %Cho
(not to be confounded with the concentration of Cho) is
relatively constant regardless of the distance to the tumor
or the tumor compartment, in contrast with %NAA, the
“%metabolite” feature that shows the biggest differences
between normal brain tissue and solid tumor. These results
further indicate that %NAA might be a good marker for
detecting infiltration. Regarding the ratio Glx/NAA, high
values of this ratio can occur as a result of an increase in
Glx, which has been associated with inflammation, neuro-
nal loss, demyelination, and tumor proliferation,42,52,53

combined with a decrease in NAA. This combination of
effects suggests that, similarly to %NAA, Glx/NAA might
also be an interesting metabolite for the detection of tumor
infiltration. Future studies are needed to evaluate the value
of these two metabolite ratios for the prediction of tumor
infiltration.

4.4 | EDT maps facilitate clinical
interpretation of MRSI data

The RF-model trained to predict the distance to the STV
based on the different metabolite ratios translates each
spectrum into a single EDT value. Moreover, this model
was trained to distinguish different tumor compartments,
since Necrosis, E-Tumor, and NE-Tumor were labeled
with different virtual distances (0 for NE-Tumor, 21 for
E-Tumor and 22 for Necrosis). The results shown in Fig-
ures 7 and 8 seem to indicate a clear association between

metabolic patterns and EDT values. This characteristic
suggests that EDT maps may be regarded as a novel type
of nosologic image, allowing an easier clinical interpreta-
tion of GBM MRSI data. Moreover, compared to blind
source separation methods,14-17,19,21,22,24-26 no assump-
tions on the number of basis spectra that need to be con-
sidered are required, which may simplify its
implementation in clinical practice. Despite this, it would
be important to study the correspondence between EDT
values and the tissue contributions identified by blind
source separation methods.

4.5 | EDT maps may improve detection of
infiltration

As described in the previous paragraph, EDT models convert
MR spectra into a single “expected distance” that is hypothe-
sized to have a correspondence to a stage in tumor growth.
Compared to Cho/NAA thresholding, the RF-based model
uses multiple features and is able to learn complex relations
between them. Consequently, under the assumption that the
probability of tumor infiltration decreases as the distance to
STV increases, it is possible that RF-based models may pro-
vide a better detection of tumor infiltration than Cho/NAA
maps alone. In the case of EDT maps, tumor infiltration is
expected to be represented by regions of low EDT values
that reflect that these regions share some of the properties
seen in regions close to the STV, where infiltration is most
likely. An encouraging fact that supports the idea that EDT
may help identify infiltration is that, as we see in Figure 6,
the RF-model shows that for distances to the STV greater
than 20 mm, there is less information for determining EDT
values. This suggests that spectra with distances greater than
20 mm are identical to normal brain spectra. These results
match the findings described by Pallud et al.,54 that describe
that for diffuse low-grade gliomas MIB-1-positive cells are
not normally found in samples collected at distances greater
than 20 mm from MRI-defined abnormalities. The relation
between EDT maps and tumor infiltration should be vali-
dated in future studies. Moreover, it could be interesting to
compare the performance for detecting tumor infiltration
between the EDT method and blind source separation
methods.

4.6 | EDT maps can be easily implemented in
clinical practice

The data required to train a new model for generating EDT
maps consists of a set of processed MRSI examinations
and the corresponding sMRI segmentations. In this work,
both the processing of MRSI data and the segmentation of
sMRI were performed fully automatically using, respec-
tively, SpectrIm and BraTumIA. Though these two
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software applications are currently only available for
research, they demonstrate that it is feasible to fully auto-
matically generate the training data based on raw examina-
tions. Once the model is trained, the quantification results
of each MRSI examination can be converted into EDT
maps almost instantaneously.

The automation of the process of training new EDT mod-
els does not only simplify its implementation but also
ensures the reproducibility of the results between centers. In
case automatic tumor segmentation is not available, semi-
automatic methods may also enable reproducible identifica-
tion of the STV in sMRI.55

Finally, another factor facilitating the introduction of the
EDT maps in clinical practice is the easy interpretation of the
results: an EDT value of 10 mm, for instance, can be easily
interpreted as a metabolic pattern that is likely to be found at
a distance of 10 mm from the solid tumor border.

Despite these advantages, the results shown in this article
can only be regarded as a proof of concept, since clinical val-
idation of the method is currently missing.

5 | CONCLUSION

The results of the presented study confirmed that most 1H-
MRS visible metabolites are altered beyond the STV.
Moreover, using the MRS-FSD model, it was possible to
compare the spatial properties of several of the most com-
monly used metabolite ratios for the characterization of
brain tumors. The analysis suggests that besides Cho/NAA,
features such as %NAA and Glx/NAA, which are often sig-
nificantly altered far from the tumor, may allow detecting
early signs of tumor infiltration. Finally, the relation
between the distance to the STV and the values of the dif-
ferent metabolite ratios was explored to produce a novel
type of map: the EDT maps. This approach converts the
information concerning multiple metabolites into a single
number, whose value may have a correspondence with the
different tissues seen at different stages of tumor growth.
EDT maps simplify the interpretation of MRSI data of
brain tumor patients and may help to identify early signs of
tumor infiltration. Further studies should explore this new
concept with higher resolution MRSI data and evaluate its
potential application for the diagnosis, follow-up, neuro-
surgical treatment, and radiotherapy planning of glioma
patients.
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FIGURE S1.1 and S1.2 Value of several features as a
function of the sMRI segmentation class (green), and the
distance to STV (blue). For each value of the horizontal
axis, the 5th, 25th, 50th, 75th and 95th percentiles are

shown as depicted in the legend. For each feature, the hori-
zontal level lines in red mark the 5th, 25th, 50th, 75th and
95th percentiles in healthy volunteers (includes GM, WM
and CSF).
FIGURE S2.1 to S2.14 MRS-FSD fitting results for %
Cho (FIGURE S2.1), %Cr (FIGURE S2.2), %Glx (FIG-
URE S2.3), %NAA (FIGURE S2.4), %Lac (FIGURE
S2.5), %Lip (FIGURE S2.6), Cho/Cr (FIGURE S2.7), Cho/
NAA (FIGURE S2.8), Glx/Cr (FIGURE S2.9), Glx/NAA
(FIGURE S2.10), Lac/Cr (FIGURE S2.11), Lac/NAA
(FIGURE S2.12), Lip/Cr (FIGURE S2.13) and Lip/NAA
(FIGURE S2.14). In each figure, each plot corresponds to
one fold of the 6-fold CV scheme used, where at each time
one-sixth of the examinations were excluded from the data
used to fit the model. Each plot shows the percentiles per
distance to the STV, similarly to what is described in the
legend of Figure S1.1 and S1.2. The fitted curves, shown
in red, were fitted to the median curves, shown in yellow.
The fitting was performed after feature rescaling as
described in section 2.6 (after rescaling 0 corresponds to
the 5th percentile of the feature in healthy volunteers, and
1 to the 95th percentile). Each plot shows the correspond-
ing coefficient of determination (R2).
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