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Abstract. Magnetic resonance fingerprinting (MRF) quantifies multi-
ple nuclear magnetic resonance parameters in a single and fast acqui-
sition. Standard MRF reconstructs parametric maps using dictionary
matching, which lacks scalability due to computational inefficiency. We
propose to perform MRF map reconstruction using a spatiotemporal
convolutional neural network, which exploits the relationship between
neighboring MRF signal evolutions to replace the dictionary matching.
We evaluate our method on multiparametric brain scans and compare it
to three recent MRF reconstruction approaches. Our method achieves
state-of-the-art reconstruction accuracy and yields qualitatively more
appealing maps compared to other reconstruction methods. In addition,
the reconstruction time is significantly reduced compared to a dictionary-
based approach.
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1 Introduction

Magnetic resonance imaging (MRI) is widely used in healthcare centers for the
diagnosis of pathologies. The diagnosis from MRI relies mostly on weighted
images, where the contrast between tissues is used to identify pathologies rather
than the absolute intensities in the images. This qualitative approach limits the
objective evaluation and reproducibility of MRI in the clinics. Although signifi-
cant effort has been made for quantitative MRI, a clinical relevant solution for
nuclear magnetic resonance (NMR) parameter mapping has not been achieved
so far. Mainly time-inefficiency and the limitation to one NMR parameter at
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interest (e.g. T1 and T2 relaxation times) make quantitative MRI inappropriate
for clinical use. To overcome the drawbacks of quantitative MRI, magnetic reso-
nance fingerprinting (MRF) has been proposed recently as a novel quantitative
MRI technique [6]. MRF quantifies multiple NMR parameters in a single and fast
acquisition. The acquisition relies on a MR sequence with pseudo-randomly vary-
ing parameters to obtain a unique signal evolution, i.e. fingerprint, per tissue and
voxel. After the acquisition, a dictionary matching algorithm assigns the voxel’s
signal evolutions to an entry of a dictionary of simulated and pre-computed signal
evolutions, which allows reconstructing quantitative maps of NMR parameters
of interest. However, this dictionary matching is time-consuming, lacks scalabil-
ity, and can introduce artefacts due to the under-sampled k -space during the
acquisition [8].

Recently, three approaches have been proposed aiming to overcome the issues
associated with dictionary matching during the MRF reconstruction. Gómez et
al. [4] proposed a spatiotemporal dictionary matching that matches a spatial
neighborhood of fingerprints instead of using a fingerprint-wise approach. They
additionally improve the computational efficiency by limiting the matching to a
local search window. However, the search window comes at the cost of requiring
spatially aligned MRF scans, and ultimately only alleviates the problem of scal-
ability of dictionary-based MRF reconstruction methods. Therefore, approaches
replacing the dictionary matching using deep learning have been proposed to
overcome the bottleneck of scalability. Cohen et al. [3] proposed a fully-connected
neural network and Hoppe et al. [5] proposed a convolutional neural network
(CNN) to learn the matching of a MRF signal evolution to NMR properties.
Both approaches show promising results regarding reconstruction accuracy and
speed, and their concepts might be a feasible way to replace the dictionary
matching involved in MRF reconstruction. However, they use a fingerprint-wise
approach, i.e. do not consider any spatial characteristics during the reconstruc-
tion, which might result in noisy reconstructions. Moreover, all three approaches
use maps reconstructed by the standard dictionary matching with simulated
entries as ground truth to compare their reconstructed maps. This ultimately
adds a bias to the methods, which resemble the dictionary matching instead of
learning the underlying relation of the fingerprints to the NMR parameter maps.

We propose a MRF reconstruction approach that exploits the spatiotempo-
ral relationship between neighboring signal evolutions motivated by noisy recon-
structions of fingerprint-wise approaches and the findings of [4]. Our approach
bases on CNNs and yields fast and more accurate reconstructions than recently
proposed methods on six healthy brain MRF images with three NMR maps: pro-
ton density (PD), T1 relaxation time (T1), and T2 relaxation time (T2). Unlike
previously published methods, we rely on parametric maps acquired trough MR
parameter mapping as ground truth instead of reconstructed maps by dictionary
matching. We compare our performance to the aforementioned spatiotemporal
dictionary- and deep learning-based methods. We report quantitative and quali-
tative results and discuss open issues and challenges towards a relevant solution
for accurate and fast MRF reconstruction.
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2 Materials and Methods

We consider a four-dimensional (4-D) MRF image I ∈ C
X×Y ×Z×T , where each

voxel I(v) = {t1, t2, . . . , tT } at location v = (x, y, z) contains a MRF signal
evolution, or fingerprint, with T temporal signal intensities ti. For each MRF
image I, a set Q = {q1, q2, . . . , qM} ∈ R

X×Y ×Z×M with M parametric maps are
available as ground truth for the reconstruction. In this work, six brain MRF
images with M = 3 parametric maps Q = {PD,T1,T2} were used.

2.1 MRF and Parametric Map Acquisition

We acquired brain scans from six healthy male volunteers (21 to 43 years) using
a tailored MRF sequence [7] on a 1.5 Tesla GE SIGNA Artist scanner (GE
Medical Systems, Milwaukee, WI, U.S.) with a 16-channel head coil as part of
an institution approved study. Each scan consisted of Z = 16 axial-oriented
slices with a matrix size of X × Y = 256 × 256, field of view (FOV) of 256 ×
256 mm2, voxel size of 1.0 × 1.0 × 5.0 mm3, and a total of 720 temporal images
per slice. After the acquisition, the images were pre-processed using a sliding-
window reconstruction [1] with a window size of 48 resulting in T = 673 temporal
images.

The parametric maps serving as ground truth for the MRF reconstruction
were acquired with the same number of slices, matrix size, FOV, and voxel
size. The T1 and T2 maps were generated using curve fitting of the MR signal
of multi-FA and multi-echo sequences, respectively. Seven T1-weighted images
were acquired with a gradient recalled echo pulse sequence with FAs of 1◦, 2◦,
5◦, 8◦, 11◦, 14◦, and 25◦, and constant TR/TE = 5.85/1.77 ms. A fast spin echo
sequence with eight TEs starting from 20 ms at an interval of 20 ms was used to
generate the T2 map (FA = 90◦ and TR = 1626 ms). By using a signal intensity
equation, the PD maps were generated from the T1-weighted images acquired
for the T1 mapping.

2.2 Spatiotemporal CNN MRF Reconstruction

We propose a CNN to learn spatiotemporal features to reconstruct the maps
Q from a MRF image I. Input to the CNN are MRF image patches IP (v) ∈
C

5×5×T ⊂ I, centered at location v. Output of the CNN are the values of the
estimated maps Q̂(v) ∈ R

M at location v. The CNN is trained to learn the
mapping M : IP (v) → Q(v). We remark that the reconstruction was performed
slice-wise due to the large slice spacing of 5.0 mm of our data. Figure 1 provides
an overview of how the input and output data are defined for the proposed
multiparametric spatiotemporal MRF reconstruction.

Pre-processing. We first apply a brain mask to the MRF images and the
corresponding maps to exclude the background in all experiments. The masks
were manually segmented using the T1 map with the polygon tool in ITK-SNAP
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Fig. 1. Overview of the proposed spatiotemporal MRF reconstruction. Note that
the signal evolutions are complex-valued but the absolute numbers are plotted for
simplicity.

(www.itksnap.org). Outliers from each map in Q are removed by clipping the
values to the percentiles [0.1, 99.9]. Finally, we normalize I along the temporal
axis T to have zero mean and unit variance, and Q along the temporal axis M
to the range [0, 1]. Note that within each subject the maps were spatially aligned
and therefore no registration was applied.

Architecture. Our network consists of five convolutional layers, which learn
the mapping M, i.e. we predict the M map values at location v from an MRF
image patch IP (Fig. 2). We first concatenate the real and imaginary part of the
complex-valued input IP (v) ∈ C

5×5×T to a real-valued input IP (v) ∈ R
5×5×2T

and consider the temporal dimension (2T ) as the channels in our network. Sec-
ond, we apply two 1 × 1 convolutional blocks to reduce the number of channels
to 256. Subsequently, we apply two convolutional blocks in parallel with differ-
ent receptive fields of 5 × 5 and 3 × 3 motivated by [2]. The output channels
of these two convolutional blocks are concatenated and fed into the last con-
volutional layer with M output channels corresponding to the values of the
estimated maps Q̂. A convolutional block in our network consists of a sequence
of 2-D convolutional layer (valid padding and stride one), dropout, batch nor-
malization, and rectified linear unit (ReLU) activation function. We maintain a
linear activation at the last convolutional layer (valid padding and stride one).
The estimated maps are denormalized to get quantitative values in the range
prior to the pre-processing. We implemented our network using the open source
machine learning library TensorFlow 1.8.0 (Google, Mountain View, CA, U.S.)
with Python 3.6 (Python Software Foundation, Wilmington, DE, U.S.).

www.itksnap.org
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Fig. 2. The architecture of our spatiotemporal CNN. To perform a convolution with
a filter size of 3 × 3, we extract a 3 × 3 patch from a 5 × 5 patch denoted as slicing
operation. The number of channels are denoted on the top of the bars and the x×y size
is provided at the lower left edge of the bars. BN: batch normalization, DO: dropout.

Training. The network was trained using an Adam optimizer with a learning
rate of 0.001, which minimized a mean squared error (MSE) loss with a batch
size of 600 randomly sampled patches IP . The dropout rate was set to 0.2 and
the training was stopped after 50 epochs, which we empirically found to be
sufficient.

2.3 Evaluation

We evaluate the performance our model and the baselines using a leave-one-out
cross-validation, i.e. we train the model on five brain scans and test it on the
left-out brain scan. Note that we tuned the architecture on one randomly chosen
cross-validation split and did not use the other splits to develop and tune the
architecture.

Baselines. We compare our method to recent approaches for MRF reconstruc-
tion using the fully-connected neural network [3], the CNN [5], and the spa-
tiotemporal dictionary matching [4]. For the deep learning-based methods, we
performed the same leave-one-out cross-validation and the data underwent the
same pre-processing as for our method. The approaches were implemented as
proposed in the papers. For [4], we also perform a leave-one-out cross-validation,
i.e. construct a dictionary using five brain scans and reconstruct the left-out
brain scan with following parameters: Wn = 11 × 11 × 3, P = 3 × 3 × 3, C = 5,
and α = 0.5 with two iterations.

Metrics. Quantitatively, we report the mean and standard deviation of the
mean absolute difference (MAE) and the root mean square error (RMSE) for
the leave-one-out cross-validation. The metrics are reported separately for the
three brain tissues white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF). The brain tissue masks were obtained from the T1 maps using
thresholding according to literature values [6].
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3 Results

Mean and standard deviation of the MAE and RMSE for the PD, T1, and T2
map reconstructions are given in Table 1. The proposed method outperforms
the other methods for most brain tissues and maps. Reconstructed maps of a
mid-brain slice are shown in Fig. 3. Qualitatively, our maps show a good recon-
struction with visible brain structures like the ventricles. It is noticeable that our
spatiotemporal approach yields a less noisy reconstruction than the fingerprint-
wise approach of Cohen et al. [3] (similar noisy reconstructions were obtained for
Hoppe et al. [5] but not reported in Fig. 3). The dictionary-based approach [4]
yields a qualitatively coarser reconstruction than our method. Overall, large
reconstruction errors are mainly present at the skull, meninges, ventricles as
well as at the boundary of the brain mask (rightmost column in Fig. 3), which
could be consistently observed for all methods.

Table 1. Mean absolute error (MAE) and root mean square error (RMSE) for the PD,
T1, and T2 map reconstructions separated by the brain tissues white matter (WM),
gray matter (GM), and cerebrospinal fluid (CSF).

Tissue Method PD T1 (ms) T2 (ms)

MAE RMSE MAE RMSE MAE RMSE

WM Cohen 0.084± 0.030 0.107± 0.032 209.0± 28.3 267.5± 21.5 43.6± 23.9 77.3± 54.7

Hoppe 0.080± 0.030 0.101± 0.031 253.9± 64.3 317.7± 67.2 61.3± 36.3 92.0± 53.8

Gómez 0.058± 0.015 0.074± 0.021 258.6± 61.0 327.2± 68.5 33.4± 20.4 73.4± 50.6

Proposed 0.055± 0.015 0.072±0.016 159.4±36.3 242.7± 54.7 28.0±17.6 71.1±62.0

GM Cohen 0.094± 0.028 0.121± 0.026 197.0± 28.4 258.0± 42.0 57.6± 35.4 97.3± 65.9

Hoppe 0.092± 0.030 0.119± 0.029 218.5± 37.6 287.5± 42.5 70.2± 41.0 105.1± 61.7

Gómez 0.060± 0.017 0.081± 0.021 190.8±24.7 269.1± 43.1 45.8± 26.9 90.5±59.6

Proposed 0.061± 0.017 0.077±0.020 208.2± 34.1 286.6± 46.5 43.2±31.2 93.6± 76.3

CSF Cohen 0.126± 0.024 0.152± 0.025 1162.6± 256.2 1364.1± 265.1 183.3± 54.1 237.0± 58.0

Hoppe 0.128± 0.013 0.156± 0.014 1013.3± 236.0 1219.4± 251.5 174.7±49.3 227.8±55.5

Gómez 0.102± 0.020 0.129± 0.019 1072.5± 164.5 1268.8± 172.6 228.6± 85.7 286.8± 86.0

Proposed 0.093± 0.013 0.113±0.009 989.2±254.7 1181.5±288.6 181.6± 48.6 240.2± 48.7

4 Discussion and Conclusion

We presented a deep learning-based, dictionary-free approach to reconstruct
parametric maps from MRF images that exploits the spatiotemporal relation-
ship between neighboring fingerprints. The approach is designed as CNN that
yields a reconstruction of parametric maps in a more accurate way than previ-
ously proposed dictionary-free methods and competes with a dictionary-based
method.

In general, the results show that a spatiotemporal reconstruction is favorable
to a fingerprint-wise reconstruction for almost all brain tissues and parametric
maps (Table 1). Out of the three brain tissues, the GM yielded the most inconsis-
tent results among the different methods. We think that this might arise due to
partial volume effects at the interface to WM and CSF. A spatial analysis reveals
high reconstruction errors in the skull, meningeal layers, and ventricles for all
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Fig. 3. Exemplary map reconstructions of one axial brain slice. The rows represent
the three maps PD, T1, and T2. The columns represent from left to right: the ground
truth map, results of Cohen et al. [3], Gómez et al. [4], and our proposed method. The
rightmost column shows the difference Q̂ − Q between our estimated map Q̂ and the
ground truth map Q.

methods (rightmost column in Fig. 3). These reconstruction errors could origin
from a partial volume effect or an apparent lack of training examples. Recon-
struction artifacts are only present in the method of Gómez et al. [4], confirming
the findings of [8]. In regards to the computational costs, all deep learning-
based approaches yield reconstructed maps within few seconds. Conversely, the
dictionary-based approach is computationally intensive, with calculations in the
order of several minutes per reconstruction. For clinically used MRF reconstruc-
tion, we therefore think that machine learning-based approaches are favorable
to dictionary-based approaches in the long term.

Our study design included parametric maps acquired trough MR parameter
mapping as ground truth. The reconstruction errors of all methods are large
compared to the errors reported in the studies of the baselines [3–5]. Such large
errors are especially surprising for the dictionary-based method, which can be
interpreted as a k-nearest neighbor search. Unfortunately, all baselines com-
pared their performance with a ground truth obtained by dictionary matching
as proposed in the original MRF paper [6]. Therefore, the methods resembled
the dictionary matching instead of learning the underlying relation between fin-
gerprints and NMR maps. We think that a comparison to acquired NMR maps
is ultimately more meaningful than a comparison with maps reconstructed from
simulated dictionaries. Our results suggest that the direct learning of fingerprints
to acquired NMR maps is possible, although additional investigations and work
are needed to lower the reconstruction errors.
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In conclusion, we demonstrated that a spatiotemporal MRF reconstruc-
tion is favorable to a fingerprint-wise MRF reconstruction designed within
a CNN by achieving quantitatively and qualitatively better parametric map
reconstructions.
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