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Abstract
Magnetic resonance fingerprinting (MRF) is a promising tool for fast and multiparametric quanti-
tative MR imaging. A drawback of MRF, however, is that the reconstruction of the MR maps is
computationally demanding and lacks scalability. Several works have been proposed to improve the
reconstruction of MRF by deep learning methods. Unfortunately, such methods have never been
evaluated on an extensive clinical data set, and there exists no consensus on whether a fingerprint-
wise or spatiotemporal reconstruction is favorable. Therefore, we propose a convolutional neural
network (CNN) that reconstructs MR maps from MRF-WF, a MRF sequence for neuromuscu-
lar diseases. We evaluated the CNN’s performance on a large and highly heterogeneous data set
consisting of 95 patients with various neuromuscular diseases. We empirically show the benefit
of using the information of neighboring fingerprints and visualize, via occlusion experiments, the
importance of temporal frames for the reconstruction.
Keywords: Magnetic Resonance Fingerprinting, Image Reconstruction, Convolutional Neural
Network, Quantitative Magnetic Resonance Imaging, Neuromuscular Diseases.

1. Introduction

Neuromuscular diseases impose a high burden to patients and society regarding severity and eco-
nomic costs (Larkindale et al., 2014). For such diseases, noninvasive outcome measures to monitor
disease progression and treatment effects are desperately needed. A promising tool for obtaining
noninvasive outcome measures is magnetic resonance imaging (MRI) (Carlier et al., 2016). How-
ever, MRI is rarely performed for outcome measures due to the long acquisition times associated
with quantitative MRI, which renders it clinically not applicable. Magnetic resonance fingerprint-
ing (MRF) (Ma et al., 2013) is a novel and promising approach for quantitative MRI, which allows
acquiring multiple quantitative MR parameters in one fast scan. The principle of MRF is to pseudo-
randomly vary the MR sequence parameters to obtain a unique signal evolution, or fingerprint, per
voxel and tissue type. Each fingerprint is then compared to a dictionary of pre-computed fingerprints
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to estimate the quantitative MR parameters at interest. For instance, we proposed MRF-WF (Marty
and Carlier, 2018), a MRF sequence for water T1 relaxation time (T1H2O) and fat fraction (FF)
quantification in skeletal muscles with an acquisition time of only 50 seconds. But while the acqui-
sition time is short, the reconstruction of the T1H2O and FF maps requires approximately 20 hours
per scan using a standard dictionary matching algorithm.

Several methods attempting to accelerate the reconstruction of MRF have been proposed lately.
Fast group matching (Cauley et al., 2015) and search window reduction (Gómez et al., 2016) aim
both at reducing the number of fingerprint comparisons during the dictionary matching. The dic-
tionary matching has also been investigated within the frame of tree data structures and iterative
reconstruction (Cline et al., 2017; Golbabaee et al., 2018b). Further, the compression of the finger-
prints has also been investigated (McGivney et al., 2014; Assländer et al., 2018). However, these
approaches suffer mainly by a over-discretized reconstruction, an approximation by compression,
and most importantly a poor scalability with more MR parameters. To cope with the mentioned
problems, several works have focused on replacing the dictionary matching by learning the map-
ping between fingerprints and MR parameters by deep learning. The deep learning-based MRF re-
construction can mainly be grouped into fingerprint-wise and spatial-temporal reconstruction. The
fingerprint-wise reconstruction takes a single fingerprint as input and estimates the MR parameter(s)
at the fingerprint’s voxel. The proposed architectures vary from fully-connected networks (Cohen
et al., 2018; Golbabaee et al., 2018a; Barbieri et al., 2018), to fully-convolutional with 1-D con-
volutions (Hoppe et al., 2017), the combination of both (Virtue et al., 2017), and recurrent neural
networks (Oksuz et al., 2019). A limitation of the fingerprint-wise reconstruction is that they do
not take advantage of the information between neighboring fingerprints. Recently, spatiotemporal
reconstruction by inputting a neighborhood of fingerprints to a neural network has been shown to
be beneficial (Balsiger et al., 2018; Fang et al., 2018). The proposed approaches reconstruct MR
parameters from 5×5 patches via a convolutional neural network (CNN) (Balsiger et al., 2018) and
MR maps slice-wise with an encoder-decoder CNN architecture (Fang et al., 2018).

Despite the increasing research being conducted on deep learning-based reconstruction of MRF,
there exist several limitations. In general, all studies conducted experiments either on phantom
or volunteer data. Furthermore, the data sets were limited in size with the maximum being six
scans (Balsiger et al., 2018). Further, while the studies on spatiotemporal reconstruction have
shown a potential advantage over fingerprint-wise reconstruction, it remains unclear to what ex-
tent the spatial dimension should be considered in the reconstruction. Last, none of the studies
investigated the influence of the temporal frames on the reconstruction. Therefore, we propose a
CNN that reconstructs quantitative MR maps from MRF. First, we show its performance on a large
and highly heterogeneous data set with 95 scans of patients suffering from various neuromuscular
diseases who were imaged at two anatomical regions. Second, we report on three different strate-
gies to incorporate spatial information: i) fingerprint-wise reconstruction (Cohen et al., 2018), ii)
slice-wise reconstruction with spatial pooling operations (Fang et al., 2018), and iii) our proposed
reconstruction with varying sizes of receptive fields. Last, to gain insights into the MR parame-
ter reconstruction, we visualize the importance of the temporal frames via occlusion experiments
applied on the temporal domain.
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2. Materials and Methods

2.1. MRF Acquisition and Reconstruction

We acquired the MRF-WF sequence at the legs and thighs levels in patients with various neuro-
muscular diseases, resulting in a highly heterogeneous data set with 95 scans (43 female, 52 male;
age = 53.7± 19.5 years). The MRF-WF acquisition consisted of a non-selective inversion followed
by a 1400 radial spokes FLASH echo train (golden angle scheme) with varying echo time (TE),
repetition time (TR), and nominal flip angle (FA). We used a field of view of 350 × 350 mm2 with
a voxel size of 1.0 × 1.0 × 8.0 mm3 and five slices per scan, which resulted in a total acquisition
time of 50 s. All experiments were performed on a 3 Tesla Siemens MAGNETOM Prismafit scanner
(Siemens Healthineers, Erlangen, Germany).

We reconstructed a MRF image space series consisting of 175 temporal frames from the raw k-
space data after the acquisition. The reconstruction involved view sharing with a k-space weighted
image contrast filter with 55 spokes, and compressed sensing with total variation (Marty et al.,
2018a,b). This reconstruction resulted in a complex-valued MRF image space series of size 350 ×
350× 175 voxels per slice. For each scan, T1H2O, FF, and transmit field efficacy (B1) reference MR
maps were reconstructed from the MRF image space series using dictionary matching (Marty and
Carlier, 2018). The total reconstruction time was approximately 20 hours per scan using a standard
desktop computer (2.6 GHz Intel Xenon E5-2630, 48 GB memory).

2.2. CNN Map Reconstruction

We propose a CNN architecture that reconstructs MR maps patch-wise from MRF image space
series. Let us consider a 2-D+time MRF image space series I ∈ CX×Y×T and its corresponding
reference MR maps Q ∈ RX×Y×M with X ×Y = 350× 350 being the spatial dimension, T = 175
being the number of temporal frames, and M = 3 being the number of MR maps (T1H2O, FF, B1).
Our CNN learns the mapping M : IP→ QP, i.e. to reconstruct a patch QP ∈ RQPX×QPY×M ⊂ Q of
the MR maps from a patch IP ∈ CIPX×IPY×T ⊂ I of the 2-D+time MRF image space series. In our
experiments, we reconstructed non-overlapping output patches of a size QPX ×QPY = 32×32 with
the input patch size being set to IPX × IPY = 42× 42 according to the spatial receptive field of the
CNN (11×11).1

2.2.1. PRE-PROCESSING

We normalized the real and imaginary parts of each MRF image space series I to zero mean and unit
variance. Each MR map has been normalized to the range [0,1] using the minimum and maximum
values of the entire data set.

2.2.2. CNN ARCHITECTURE

Our CNN architecture consists of two types of blocks: a temporal block that leverages the temporal
information of the fingerprints, and a spatial block that leverages the spatial correlation between
neighboring fingerprints. After each temporal block follows a spatial block, with this sequence
being repeated five times. We treat the temporal dimension T as feature channels, and therefore,

1. The size of QP is mainly restricted by GPU memory. We could not determine a statistically significant difference to
other patch sizes.
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Figure 1: The proposed CNN architecture. The numbers at the top of the bars denote the number
of feature channels (T = 175 and M = 3 for MRF-WF), and numbers at the lower left of
the bars denote the spatial patch size.

the concatenated real and imaginary parts of the complex-valued IP serve as input, i.e., we used a
real-valued input IPreal ∈ RIPX×IPY×2T . The output QP is reconstructed after a final 2-D convolution
with kernel size of 1×1, M feature channels, and a linear activation (Figure 1).

Our temporal blocks learn features along the fingerprints by applying 1× 1 convolutions and
are inspired by dense blocks (Huang et al., 2017). The temporal blocks contain four layers, and
each layer is connected to the output feature channels of every preceding layer. The number of
feature channels, or growth rate, n is equal for the four layers in a temporal block, and decreases
within the CNN from 192, 160, 128, 92, to 64. In order to reuse features and to further facilitate
the gradient flow, we additionally concatenate the input of a temporal block to its output arriving at
4 · n+ nin features channels after each temporal block, with nin being the number of input feature
channels to the temporal block. Each layer in our temporal block consists of a 2-D convolution
with kernel size of 1× 1, rectified linear unit (ReLu) activation function (Glorot et al., 2011), and
batch normalization (Ioffe and Szegedy, 2015). After each temporal block, our spatial blocks extract
spatial features by performing a 2-D convolution with a kernel size of 3×3 (valid padding) followed
by a ReLu activation function, and batch normalization. The number of feature channels of the
spatial blocks decreases equally to the growth rate of the temporal blocks within the CNN. Code is
available online2.

2.2.3. TRAINING

We trained our CNN for 100 epochs with a batch size of 50 randomly selected patches. We used an
Adam optimizer (Kingma and Ba, 2015) to minimize a mean squared error loss with a learning rate
of 0.001, β1 = 0.9, and β2 = 0.999. The CNN was implemented with TensorFlow 1.10.0 (Google,
Mountain View, CA, U.S.) and Python 3.6.5 (Python Software Foundation, Wilmington, DE, U.S.).

2.3. Comparison and Evaluation

We compared our CNN to three other deep learning-based MRF reconstruction methods. The first
method is a neural network with two hidden fully-connected layers (Cohen et al., 2018). The method

2. https://github.com/fabianbalsiger/mrf-reconstruction-midl2019
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requires single fingerprint as input and is, therefore, an extreme variant where no neighboring fin-
gerprint information is considered. The second method is an encoder-decoder CNN with two spatial
pooling operations (Fang et al., 2018). The method reconstructs entire MR map slices and hence
represents the opposite extreme variant due to the spatial pooling operations, which increase the
receptive field drastically compared to our method. We implemented both methods as originally
described with slight modifications for our MRF sequence and we used the same pre-processing
and training scheme as for our method. Last, we also show the reconstructions of our previous
architecture with a receptive field of 5×5 (Balsiger et al., 2018).

We evaluated the performance of our CNN and the two compared methods by randomly split-
ting our data set into training/validation/testing sets (n=55/20/20). Note that we purposely did not
apply any stratification regarding neuromuscular disease or anatomical region to evaluate the ro-
bustness to the heterogeneous data set. The best performing model on the validation set, in terms of
the normalized root mean squared error (NRMSE), was selected and applied to the testing set. We
calculated the NRMSE, peak signal-to-noise ratio (PSNR), and structural similarity index measure
(SSIM) (Wang et al., 2004) between the predicted and the reference maps on a scan level. Addi-
tionally, we calculated the coefficient of determination (R2) between the predicted and reference
mean values of manually segmented region of interests within the major muscles across all scans.
For the calculations of the NRMSE and PSNR, background voxels were excluded using a mask
segmented by thresholding an anatomical image (out-of-phase). The mask for the T1H2O map was
further processed to exclude voxels with a FF higher than 0.65 because the confidence of T1H2O
values is highly decreased at high FFs. For the SSIM, we used a window size of 7×7, K1 = 0.01,
K2 = 0.03, and L was set to the maximum value of the reference map.

3. Experiments and Results

We first present the comparison between our method and (Cohen et al., 2018; Fang et al., 2018;
Balsiger et al., 2018) for the deep learning-based reconstruction of MRF-WF. Second, we investigate
the influence of the CNN’s spatial receptive field on the reconstruction. Third, we visualize the
importance of the temporal frames on the reconstruction.

3.1. Deep Learning-based Reconstruction of MRF-WF

Figure 2 shows the reconstruction of T1H2O, FF, and B1 maps of a representative case. Compared
to our method, the fingerprint-wise method of (Cohen et al., 2018) produced noisier and the slice-
wise with spatial pooling operations method of (Fang et al., 2018) smoothed map reconstructions.
Further, we are able to improve over our previous architecture (Balsiger et al., 2018). Quantitatively,
our method yielded the best reconstructed MR maps for all evaluation metrics (Table 1).

3.2. Influence of the Receptive Field

To this date, it is unclear how the information of neighboring fingerprints affects the deep learning-
based MR map reconstruction. We think that an optimal solution lies between the extreme variants
of fingerprint-wise reconstruction and reconstruction including spatial pooling operations with large
receptive fields. Therefore, we relied on a patch-wise MR map reconstruction and determined the
effect of the receptive field by experimentation. We modified the spatial blocks in our CNN by
performing convolutions with a kernel size of 1×1 instead of 3×3 to obtain CNNs with receptive
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Figure 2: T1H2O, FF, and B1 maps of a 73 years old male patient with inclusion body myositis.
The reference maps, the reconstructions, and the reconstruction errors (reference minus
reconstruction) of our and the compared methods are shown. a.u.: arbitrary unit.

Table 1: Results for the MR map reconstruction.

Metric MR map Proposed Cohen et al. Fang et al. Balsiger et al.
NRMSE T1H2O 0.024 ± 0.016 0.065 ± 0.026 0.064 ± 0.028 0.032 ± 0.017

FF 0.017 ± 0.008 0.042 ± 0.005 0.056 ± 0.005 0.021 ± 0.007
B1 0.024 ± 0.007 0.051 ± 0.006 0.062 ± 0.006 0.035 ± 0.006

PSNR T1H2O 36.16 ± 4.211 26.53 ± 1.869 26.85 ± 2.557 33.27 ± 3.485
FF 35.84 ± 3.038 27.50 ± 0.969 25.00 ± 0.799 33.90 ± 2.564
B1 34.27 ± 1.856 27.59 ± 0.864 25.88 ± 0.842 31.08 ± 1.135

SSIM T1H2O 0.978 ± 0.011 0.931 ± 0.029 0.915 ± 0.040 0.972 ± 0.013
FF 0.990 ± 0.007 0.955 ± 0.024 0.953 ± 0.033 0.985 ± 0.012
B1 0.977 ± 0.009 0.934 ± 0.025 0.926 ± 0.030 0.974 ± 0.008

R2 T1H2O 0.964 0.888 0.909 0.949
FF 0.999 0.998 0.996 0.999
B1 0.998 0.967 0.950 0.993
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fields lower than 11×11, and added additional 3×3 convolutions with 64 channels before the last
1×1 convolutional layer of our CNN to obtain CNNs with receptive fields up to 21×21.3 Figure 3
shows the NRMSE for the T1H2O map reconstruction, which is the most difficult, with varying
receptive fields of our CNN. The optimal receptive field for MRF-WF is 11×11, with a statistically
significant better reconstruction compared to receptive fields of size 5×5 and lower. Figures for the
FF and B1 map reconstruction can be found in the Appendix A.
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Figure 3: Effect of the receptive field on the T1H2O map reconstruction. Paired Wilcoxon signed
rank test with significance level of 0.05 and Bonferroni correction for multiple compar-
isons.

3.3. Importance of the Temporal Frames

We adopted the occlusion experiments proposed by (Zeiler and Fergus, 2014) for MRF to exam-
ine the importance of the temporal frames of the fingerprint for the MR map reconstruction. We
applied the occlusion in the temporal domain, which allows for simple yet effective visualization
of the importance of the temporal frames. Therefore, we blacked out each t-th temporal frame and
reconstructed the MR maps with this occluded MRF image space series. We then considered the
absolute difference of the NRMSE to the non-occluded MRF image space series as the importance
of the t-th temporal image for the reconstruction. The importance of each temporal frame t is shown
in Figure 4(a). We observe that the first temporal frames, after the non-selective inversion pulse,
have a high importance for the T1H2O and FF map reconstruction. Additionally, the importance
correlates with changes of the MRF-WF sequence parameters over the course of the acquisition
(cf. Figure 4(b)). Note that we could also observe the same pattern for the importance when running
the occlusion experiment on modified versions of our network.

4. Discussion

We evaluated a CNN consisting of temporal and spatial blocks for the MR map reconstruction from
MRF-WF, and compared it to the current state-of-the-art deep learning-based MRF reconstruction

3. We remark that this results in a slightly different number of learnable parameters, which could be compensated.
However, we decided not to do so as this would change the CNN architecture.
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(b) The MRF-WF sequence parameters.

Figure 4: The importance of the temporal frames for the MR map reconstruction.

on a large and highly heterogeneous data set consisting only of patient scans. Our proposed CNN
outperformed the compared methods quantitatively and qualitatively. We attribute the good perfor-
mance of our CNN to the trade-off between temporal and spatial feature learning. An indication for
the superiority of such a spatiotemporal trade-off is also the noisier or over-smoothed reconstruc-
tions of the compared methods.

We conducted an experiment to show the influence of the spatial receptive field on the recon-
struction. It is evident that the reconstruction benefits from the information of neighboring finger-
prints, however, only to some extent. For MRF-WF, a receptive field larger than 11× 11 voxels is
not beneficial, which we also attribute to the highly diverse appearance of neuromuscular patholo-
gies. Especially incorporating spatial features from multiple scales as with the method of (Fang
et al., 2018) yielded worse reconstructions. For future developments, it is therefore essential to
consider the application of the MRF sequence. MRF scans with small or highly diverse pathologies
might benefit from the information of neighboring fingerprints but only to a certain extent. We also
note that the optimal receptive field is certainly depended on the in-plane voxel size and the k-space
sampling.

Visualizing the importance of the temporal frames might be a useful tool for further develop-
ments of MRF reconstruction, and the MRF sequence development itself. From a MR physical
point of view, the first temporal frames should be sensitive to T1H2O due to the applied inversion
pulse at the beginning of the MRF-WF acquisition. We could observe a high importance of the first
few temporal frames for the T1H2O but also for the FF reconstruction by our occlusion experiment.
Further, the high correlation of the importance to changes in the MRF sequence parameters might
suggest using a smoother transition of parameter values. However, further work needs to be done to
better understand the reconstruction. For instance, it remains unclear from a MR physical point of
view, why the last 25 temporal frames are of high importance for the B1 map reconstruction.
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5. Conclusion

We proposed a spatiotemporal CNN to reconstruct MR maps from MRF, and showed empirically
that a deep learning-based reconstruction benefits from the information between neighboring fin-
gerprints and learns features that can make sense from a MR physical point of view.
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Appendix A. Influence of the Receptive Field on the FF and B1 Map Reconstruction
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Figure 5: Effect of the receptive field on the FF map reconstruction. Paired Wilcoxon signed rank
test with significance level of 0.05 and Bonferroni correction for multiple comparisons.
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Figure 6: Effect of the receptive field on the B1 map reconstruction. Paired Wilcoxon signed rank
test with significance level of 0.05 and Bonferroni correction for multiple comparisons.
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