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Abstract. Hypermethylation of the O6-methylguanine-DNA-methyl-
transferase (MGMT) promoter in glioblastoma (GBM) is a predictive
biomarker associated with improved treatment outcome. In clinical prac-
tice, MGMT methylation status is determined by biopsy or after surgical
removal of the tumor. This study aims to investigate the feasibility of
non-invasive medical imaging based “radio-genomic” surrogate markers
of MGMT methylation status.

The imaging dataset of the RSNA-ASNR-MICCAI Brain Tumor Seg-
mentation (BraTS) challenge allows exploring radiomics strategies for
MGMT prediction in a large and very heterogeneous dataset that repre-
sents a variety of real-world imaging conditions including different imag-
ing protocols and devices. To characterize and optimize MGMT pre-
diction strategies under these conditions, we examined different image
preprocessing approaches and their effect on the average prediction per-
formance of simple radiomics models.

We found features derived from FLAIR images to be most informa-
tive for MGMT prediction, particularly if aggregated over the entire
(enhancing and non-enhancing) tumor with or without inclusion of the
edema. Our results also indicate that the imaging characteristics of the
tumor region can distort MR-bias-field correction in a way that nega-
tively affects the prediction performance of the derived models.
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1 Introduction

Brain tumors are a rare condition with about 330 000 yearly incidents (227 000
deaths) worldwide [14]. Despite their comparably low incidence rate, brain can-
cers cause the highest average number of years of life lost among all cancers [3].
Gliomas represent 75% of primary malignant brain tumors in adults [9]. Glioblas-
toma (GBM) is the most frequent and most malignant sub-type of glioma, and
accounts for about 50% of primary malignant brain cancer. Surgical resection
to the maximal safe extent is the primary treatment for newly diagnosed GBM,
followed by radiation and chemotherapy. However, due to the tumor’s infiltrative
growth, resection, even if macroscopically complete, leaves behind tumor cells
and the tumor typically recurs at the margins of the resection cavity. Following
surgery, addition of Temozolomide (TMZ) chemotherapy to radiotherapy treat-
ment has been the standard of care since 2005. Despite active multi-institutional
and international research efforts, GBM patients continue to have a poor prog-
nosis with a 5-year survival rate of about 5.5% [9].

The quest for more personalized oncologic treatment allocation has driven
research into genetic and molecular biomarkers. A few of these have been
reported to have prognostic and/or predictive implications for GBM tumors.
Among those, hypermethylation of the O6-methylguanine-DNA-methyltrans-
ferase (MGMT) gene has been shown to be associated with improved outcome
in (GBM) and is now considered a favorable prognostic factor and a predictor
of chemotherapy response for GBM patients [16]. MGMT encodes for an impor-
tant DNA repair protein; it’s expression may be suppressed by methylation of
the promoter region, which results in decreased DNA repair capability and thus
increased susceptibility to the damaging effects of DNA-targeting treatments,
such as alkylating agents like TMZ and also radiation therapy.

Genetic and molecular profiling is an invasive process that involves tissue
extraction from the tumor via stereotactic/needle biopsies; it is inherently prone
to sampling bias and therefore may not capture the tumor’s spatial heterogene-
ity, a particular hallmark of GBM. Detection of a tumor’s MGMT status from
routine clinical imaging, on the other hand, could provide a non-invasive detec-
tion approach that would not suffer from the sampling restrictions inherent to
surgical biopsies. Recent research into such “radio-genomic” imaging-markers
has been fueled by the premise that biomedical images may contain information
about the underlying pathophysiology which, even if hidden from the human
eye, can be captured via quantitative image analysis [5].

Evidence for imaging markers of MGMT promoter methylation in GBM,
however, remains mixed. A systematic review and meta-analysis [17] of 22 stud-
ies (published before March 2018) that investigated MR~imaging features linked
to MGMT promoter methylation identified reduced edema, elevated apparent
diffusion coefficient (ADC) and low perfusion as likely imaging characteristics
of promoter methylated MGMT. The review found increased performance for
studies using ADC or perfusion measures and recommends including the corre-
sponding MR sequences in imaging protocols.
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More recent studies indicate AUCs between 0.74 to 0.87 [6-8,10,19] and
accuracies of 0.76 to 0.83 [4,12] for a variety of “classical radiomics” and deep
learning models.

These studies were performed on single-institution datasets [7,12], public
data collections [4, 6], or a combination of both [8,10] and were all limited to fewer
than 300 patients across training and test sets. The most heterogeneous dataset
appears to have been investigated in [10] which employed a cohort of 133 patients
(from the public TCTA GBM collection and from Guangzhou General Hospital)
for training and another cohort of 60 patients (from two further hospitals) for
independent validation.

This study presented in this manuscript was performed on the imaging
dataset of the 2021 RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS)
challenge which aggregates imaging information from five public repositories and
an undisclosed number of institutional data collections. Images were acquired
“under standard clinical conditions, but with different equipment and imaging
protocols, resulting in a vastly heterogeneous image quality reflecting diverse
clinical practice across different institutions” [1].

This diversity allows exploring the performance of radiomic strategies for
MGMT prediction in the presence of significant heterogeneity (protocols, device-
manufacturers and generations) that must be expected in real-world applica-
tions. To this end, we first examined different data preprocessing approaches and
their effect on average prediction performance of simple radiomics models. Using
the most promising preprocessing strategy and most informative MR-sequence,
we then investigated which tumor compartments and groups of radiomic features
drive MGMT prediction.

2 Materials and Methods

2.1 Data

This study used the public dataset of the RSNA-ASNR-MICCAI Brain Tumor
Segmentation (BraTS) Challenge 2021 [1,2,13]. The private test set of the
RSNA-ASNR-MICCALI challenge was not considered in the analysis because our
image processing workflow relied on tumor segmentation tools that could not be
automatized fully for deployment as Jupyter notebook as required for submission
via the Kaggle portal, see Sect. 2.2 for further details.

Data for the MGMT prediction task of the BraTs challenge (task 2) consisted
in pre-operative MR-imaging for 585 patients with GBM; brain tumor, as well
as information about the tumor’s MGMT promoter methylation. MR imaging
comprised four MR sequences per patient: T1-weighted (T1), T1 contrast (T1c)
after administration of Gadolinium contrast agent, T2-weighted MRI (T2) and
FLAIR (FLAIR). All images were provided in DICOM format, after application
of a skull-stripping technique that preserved space and resolution of the original
images [1]. The tumors’ MGMT status was provided as a binary variable that
indicates either absence or presence of promoter methylation of the MGMT gene.
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The imaging of three of the 585 patients was incomplete with missing infor-
mation in at least a subset of the four MR-sequences. These patients (IDs 109,
123, 709) were excluded from further processing.

The imaging dataset was highly heterogeneous, comprising MRIs collected
from multiple public and institutional resources. Consequently, imaging proto-
cols and quality varied greatly across the dataset. For example, MR slice spacing
(thickness) varied between 0.22 to 11.00mm (0.43 to 6.00 mm) with different
acquisition planes across MR sequences and patients.

2.2 Image Pre-processing

All images were processed according to the workflow depicted in Fig. 1: First,
complete patient imaging datasets containing all four MRI sequences (T1, T1lc,
T2, FLAIR) were selected and DICOM images converted to the NIfTT format.
Brain masks were created by removing the zero-background from the skull-
stripped images. Independently, the tumors present in each patient’s imaging
dataset were segmented, as described in this section. Exploiting the availability
of brain masks and tumor regions of interest (ROIs), the original images were
subjected to further pre-processing followed by feature extraction.

Skull-stripped
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Fig. 1. Image processing workflow.

Tumor Segmentation. Each patient’s tumor was segmented using the auto-
matic GBM segmentation software DeepBraTumIA'. DeepBraTumlIA requires
T1, Tlc, T2 and FLAIR sequences as input to identify the enhancing tumor
(ET), non-enhancing tumor (NET) and edema subregions. Masks for each of
these ROIs are output in a co-registered reference frame, as well as in the orig-
inal frame of the respective MR original sequence. At the time of writing, the
tool required user interaction via a GUI to initiate the automatic segmentation
process. As this process could not be fully automatized, submission through the
challenge portal via Python Jupyter notebook was not possible. Instead, valida-
tion was performed on subsets of the public data as described in Sect. 2.3.

! https://www.nitrc.org/projects/deepbratumia/, as of November 2021.
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Table 1. Investigated MR~image preprocessing approaches.

Config ID | Bias-field correction | Standardization | Mask
A Yes white-stripe Brain
B Yes z-score Brain
C No z-score Brain
D No z-score Brain w/o tumor
E Yes z-score Brain w/o tumor

Intensity Standardization. Non-quantitative MR imaging lacks a physi-
cal/anatomical reference-scale that would allow direct quantitative comparison
of image intensity across vendors and imaging protocols. To enable compara-
bility in the absence of such a reference, statistical standardization techniques
are employed that aim at aligning the intensity distributions found in anatom-
ical reference structures across individual image acquisitions. Frequently used
reference-regions in the context of brain-MRI are the brain’s white-matter com-
ponent (white-stripe standardization) or the entire brain anatomy (z-score stan-
dardization over brain mask). Both approaches operate on the assumption that
each constituent of the brain anatomy results in imaging voxels of a characteris-
tic MR intensity and that the relative proportion of those constituents remains
relatively stable across individuals. The latter assumption is clearly violated in
the case of GBM patients whose tumor lesion may replace a substantial por-
tion of healthy brain tissue and represents a source of strong inter-individual
variability in the imaging appearance.

Given the strong heterogeneity of the RSNA-ASNR-MICCAI dataset, we
considered effective standardization to be critical to extracting a robust MGMT-
related signal from the imaging data. For this reason, we investigated a range of
preprocessing strategies that included different combinations of (a) application
of bias-field correction, (b) standardization method and (c) the brain regions to
which those two steps were applied.

Table 1 summarizes the tested strategies. Bias-field correction and z-score
standardization were performed using the respective SimpleITK [11] functions.
For white-stripe standardization we relied on a modified version of the implemen-
tation in [15]%. Processing with “brain” mask included all non-zero voxels of the
skull-stripped images. For processing with “brain w/o tumor” mask, all tumor
subregions detected by the automatic segmentation approach were removed from
the “brain” mask.

Radiomics Feature Extraction. In addition to the tumor subregions pro-
vided by the automatic segmentation approach, further masks were created
corresponding to different combinations of those subregions. We only included
combinations of ROIs that typically result in a contiguous volume, and therefore

2 https://github.com/jcreinhold/intensity-normalization, as of November 2021.
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did not consider the combination of non-enhancing tumor and edema. Table 2
summarizes all relevant ROIs.

Table 2. Tumor sub-regions used for feature extraction

ROI name | Tumor subregion(s)

ROI-1 Edema

ROI2 Enhancing tumor (ET)
ROI3 Non-enhancing tumor (NET)
ROI.1-2 |Edema & ET

ROI_2-3 ET & NET

ROI.1-2-3 |ET & NET & edema

We used pyradiomics [18] to extract shape-based, intensity and texture fea-
tures (n=107) from each ROI (Table2) and MR-sequence resulting from the
different pre-processing configurations (Table 1). The preprocessed images were
resampled to a spatial resolution of 1.00mm x 1.00mm x 1.00mm prior to
feature extraction. Image intensity values were shifted to positive values and
the “bin_width” parameter for gray value discretization was chosen in such a
way that the full range of intensity values after standardization could be well
captured by approximately 64 bins.

2.3 Modeling Experiments

This study aimed at identifying (a) the most suitable pre-processing approach
for the provided imaging dataset and (b) sets of radiomics features, ROI and
MR-modality combinations that carry predictive information of MGMT-status.
To address these goals, we performed two sets of modeling experiments that will
be reported here.

In a first experiment, we investigated the change of global performance trends
with the preprocessing approach. The second experiment, focused on identifying
the specific features and ROIs that provide most relevant information for the
globally best performing pre-processing combination.

As indicated in Sect. 2.1, all experiments performed in this study relied exclu-
sively on the public data set of the challenge which was divided into subsets
(stratified by MGMT status) for model development (training-set: 80%) and
testing of the final prediction model on unseen data (test-set: 20%), respectively.
Initial experiments showed the final test performance to be highly sensitive to
those splits, probably due to the high degree of heterogeneity of the imaging
data. To obtain representative performance results despite this variability, we
repeated model development and final evaluation steps multiple times using dif-
ferent train/test splits of the dataset, as illustrated in Fig. 2. The specific feature
and model selection strategies employed for each of the experiments are further
detailed in the following subsections.
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Fig. 2. Model development and final evaluation was performed multiple times using
different training/test splits of the full dataset (N = 50 for experiment-1, N = 15 for
experiment-2).

Experiment-1: Performance Trends in Function of Preprocessing
Strategy. The first experiment aimed at uncovering global performance trends
in function of the chosen preprocessing strategy.

For each combination of MR sequence and ROI (24 combinations), a set
of features was selected by choosing the 20 (individually) most predictive fea-
tures, identified by univariate F-score ranking, and discarding strongly corre-
lated features (Pearson correlation coefficient exceeding 0.7) from this group.
The selected features were standardized and the hyperparameters of a family
of linear classifiers (including support-vector classifiers with linear kernel, logis-
tic regression, with L2, L1 and combined penalties) were optimized to max-
imize AUC in 5-fold cross-validation, resulting in a single “best model” per
MR-sequence and ROI. Finally, the combination of MR-sequence and ROI that
yielded the highest-performing “best model” in cross-validation was selected as
final prediction model, and evaluated on the unseen split of the dataset.

This process was repeated for 50 different train/test splits by varying the
random seed of the the stratified split procedure, resulting in 50 independently
selected combinations of prediction model, MR-sequence and ROI.

The entire feature selection, training and evaluation process was repeated
with features derived from the five different pre-processing configurations in
Table 1.

Experiment-2: Identification of Predictive Features and ROIs for Opti-
mal Preprocessing Strategy and Most Informative MR-sequence. The
second experiment aimed at identifying the specific set of radiomic features that
carry predictive information of MGMT status for the different ROIs of the best-
performing preprocessing approach and MR sequence resulting from the first
experiment.

The feature selection approach in this experiment relied on repeated hyper-
parameter optimization of Elastic-Net classifiers in 5-fold cross-validation. Each
such optimization resulted in a set of models with varying cross-validation per-
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formance and varying number of selected features. From this set of models, we
chose the best-performing model with no more than 20 features and extracted its
features. For a given training set, this feature selection process was repeated 15
times by varying the random seed for cross-validation splitting, resulting in 15
feature sets. The features from those sets were then aggregated and ordered by
their selection frequency, resulting in a ranking of the most-frequently selected
features across the 15 selection repetitions.

From the top-ranked (most frequently selected) features, we built a predic-
tion model by 5-fold cross-validation and grid search over the space of linear
classifiers and hyper-parameters. The most promising of these models (highest
cross-validation performance) was selected as final prediction model. This pre-
diction model was evaluated on the test-split which had not been used in the
feature selection and training process.

To obtain robust estimates of test-performance, we repeated the above
process (feature selection, model training, model evaluation) for 15 different
train/test splits by varying the random seed of the stratified splitting proce-
dure. This resulted in 15 independently selected feature sets, prediction models
and their corresponding test performances for each ROI and MR-sequence com-
bination.

2.4 Statistical Analysis

Average AUC performance on the test-sets was compared across the different
preprocessing approaches in experiment-1, and across tumor ROIs in experiment-
2. To test the null hypothesis that two sets of performance measurements origi-
nate from the same distribution, an independent 2-sample t-test was performed
when both sets of measurements were normally distributed and of equal vari-
ance. Welch’s t-test was performed in case of normal distribution and un-equal
variance, and Mann-Whitney U test in case of non-normal distribution. P-values
< 0.05 were interpreted as “significant” rejection of the null hypothesis, and are
reported in the manuscript.

3 Results

3.1 Experiment-1: Identification of Favorable Preprocessing
Strategies and Most Informative MR-sequence

Figure 3 summarizes the test performance of the single-sequence, single-ROI pre-
diction models evaluated in experiment-1, Sect. 2.3, in function of pre-processing
configuration.

Models based on features derived from preprocessing configurations {C, D,
E} performed significantly better (p < 0.05) compared to models based on pre-
processing configurations {A and B}, Fig.3(a), with mean AUC of 0.54+0.05 to
0.55+0.05 vs. 0.52£0.04, Table 3. Within these sets, no statistically significant
performance differences were observed. Both configuration sets differ in their
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approach towards bias-field correction: For preprocessing configurations {A, B},
the bias field was estimated over the entire brain volume; configurations {C, D,
E} either did not attempt to correct for the bias-field, or excluded the tumor
from bias-field estimation. The individually highest performing models from con-
figurations {C, D, E} were based on the MR-FLAIR sequence, Fig. 3(b).
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Fig. 3. Distribution of test-AUC of 50 best performing classifiers resulting from
experiment-1, Sect. 2.3. Models based on features derived from preprocessing configu-
rations {C, D, E} perform significantly better (p < 0.05) than those based on features
derived from configurations {A, B}, Fig. 3(a). Within these groups, no significant dif-
ferences in overall performance were observed. Highest performing models from config-
urations {C, D, E} were based on MR-FLAIR Fig. 3(b)

Table 3. Average cross-validation and test performance (AUC) of 50 best performing
classifiers resulting from experiment-1 in function of preprocessing approach.

Config ID A B C D E
Validation AUC | 0.60+0.02 | 0.61+0.01 | 0.61+0.01 | 0.61£0.02 | 0.624+0.01
Test AUC 0.52£0.04 | 0.52+0.04 | 0.5440.05 | 0.54+0.05 | 0.55+0.05

3.2 Experiment-2: Identification of Predictive Feature Groups
and ROIs

Figure4 summarizes the prediction performance of experiment-2 using fea-
tures derived from MR-FLAIR sequences preprocessed according to approach
C, Fig.4(a), and approach D, Fig. 4(b), respectively.

Highest test performance was achieved by models derived from ROI_2-3 and
ROI.1-2-3, reaching AUCs of 0.56+0.04 to 0.56+0.05 (preprocessing configu-
ration C) and 0.5540.05 to 0.56+0.04 (preprocessing configuration D), respec-
tively, Table4. In both preprocessing configurations, the performance of models



376 D. Abler et al.

from these ROIs was significantly higher than performance of models from ROI_2
alone. For configuration C, the performance of models from these ROIs was also
significantly higher than performance of models from ROI_3, but not from ROI_1.
The opposite was found for configuration D.

Figure5 shows the 15 features that were most frequently included in
the 15 independently developed ROI-specific prediction models resulting from
experiment-2. Features selected for ROI_3, ROI_2-3, ROI_1-2-3 and prepro-
cessing configurations C and D are displayed. Multiple features were selected
consistently across both best-performing ROIs (ROI2-3 and ROI_1-2-3):
GLDM-DependenceNonUniformityNormalized and shape (SurfaceVolumeRatio
vs Sphericity) for preprocessing configuraton C, and GLCM-ClusterProminence
and shape (SurfaceVolumeRatio vs Sphericity) for preprocessing configuration
D. Also for ROI 3, the same three features (GLRLM-GrayLevelNonUniformity,
GLCM-ClusterShade, GLSZM-SmallAreaEmphasis) were selected consistently
across preprocessing configurations.
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Fig. 4. Distribution of test-AUC for ROI-specific models resulting from the model
selection and evaluation approach proposed in experiment-2. Features were derived
from MR-FLAIR images preprocessed according to configuration C, Fig.4(a), and D,
Fig. 4(b), respectively. Models based on features derived from ROI_2-3 and ROI_1-2-3
performed significantly best across the tested preprocessing configurations.

Table 4. Average cross-validation and test performance (AUC) of 15 repetition of
experiment-2 Sect. 2.3 based on MR-FLAIR images preprocessed according to config-
uration C and D.

AUC

ROI1

ROI2

ROI3

ROI_1-2

ROI_2-3

ROI_1-2-3

(C) Validation

0.58+0.02

0.5740.02

0.5940.03

0.5740.02

0.5940.03

0.6040.02

(C) Test

0.53+0.06

0.5140.02

0.5240.03

0.5040.03

0.56+0.04

0.5640.05

(D) Validation

0.56+0.03

0.5740.04

0.59+0.03

0.5540.02

0.60+£0.03

0.60£0.02

(D) Test

0.50+0.03

0.5140.04

0.54+0.03

0.5140.04

0.56+0.04

0.5540.05
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4 Discussion

This study investigated the effect of different preprocessing strategies on MGMT
prediction performance. The observed significant performance difference between
preprocessing configurations {A, B} vs {C, D, E} indicates that inclusion of the
tumor region in the bias-field estimation process deteriorates the resulting mod-
els’ ability to predict MGMT status. This negative effect on modeling outweighed
any other potential gains that bias-field correction may have conferred to the
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prediction task. Our experiments did not provide clear indications for the rel-
ative superiority of different standardization techniques on overall performance
(white-stripe vs z-score based on intensity statistics of the entire brain with or
without tumor regions). However, when disaggregated by MR-sequence, predic-
tors based on preprocessing approaches {C, D, E} applied to FLAIR sequences
appeared to outperform all other approaches.

Focusing on FLAIR sequences, we then investigated predictive performance
and relevant features separately for each ROI and for two of the three well per-
forming preprocessing strategies (C, D). Results showed higher predictive per-
formance for models based on ROI_2-3 (ET, NET) and ROI_1-2-3 (entire tumor:
edema, ET, NET) compared to individual tumor sub-regions (ROI.1, ROI_2),
potentially indicating that the transition zones between the individual tumor
compartments carry relevant information for the prediction task. This confirms
the findings of earlier studies that identified features from the tumor core and
the whole tumor region, but not the edema alone, to be most predictive [6,10,12]
across different MR-sequences.

Experiment-2 selected various features consistently across the best per-
forming ROIs and preprocessing configurations C and D. These include shape
measures (Sphericity, SurfaceVolumeRatio) of the core tumor alone (ROI_2-
3) and with edema (ROI_1-2-3), as well as texture features (GLSZM-Small-
AreaEmphasis, GLDM-DependenceNonUniformityNormalized, GLDM-Large-
DependenceLowGrayLevelEmphasis, GLCM-ClusterProminence). Shape mea-
sures of the active tumor, and edema region have previously been shown to
carry relevant information for MGMT prediction [6]. Another study [8] reported
the highest prediction performance to be achieved by T2 texture features
(FLAIR was not investigated) with GLCM-ClusterProminence among the best-
performing features.

Overall performance of the identified single-sequence and single-ROI mod-
els remained relatively low with maximum average test-AUC of 0.564+0.04 for
ROI_2-3 in preprocessing configurations C and D. Large variability in perfor-
mance measures was observed across models trained and validated against dif-
ferent train/test splits despite ensuring stratification with regard to MGMT sta-
tus. For example, the performance of individual train test splits varied between
AUC 0.47 to 0.63 and 0.48 to 0.65 for ROI_2-3 and preprocessing configurations
C and D, respectively.

This variability indicates the presence of other strongly differentiating factors
in the imaging dataset that were not controlled for by stratification with regard
to MGMT status. Among the potential candidates are specific characteristics
of the imaging protocols used by the different imaging centers that contributed
to this datasets. As a next step, we therefore seek to investigate the effect of
imaging characteristics on MGMT prediction performance by subdividing the
dataset into subgroups that share a more homogeneous set of image acquisition
and quality parameters.
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